Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem1 Structured version   Visualization version   GIF version

Theorem clsk1indlem1 38343
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) does not have the K1 property of isotony. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
Assertion
Ref Expression
clsk1indlem1 𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡))
Distinct variable groups:   𝐾,𝑠,𝑡   𝑠,𝑟,𝑡
Allowed substitution hint:   𝐾(𝑟)

Proof of Theorem clsk1indlem1
StepHypRef Expression
1 tpex 6957 . . . . . 6 {∅, 1𝑜, 2𝑜} ∈ V
21a1i 11 . . . . 5 (⊤ → {∅, 1𝑜, 2𝑜} ∈ V)
3 snsstp1 4347 . . . . . 6 {∅} ⊆ {∅, 1𝑜, 2𝑜}
43a1i 11 . . . . 5 (⊤ → {∅} ⊆ {∅, 1𝑜, 2𝑜})
52, 4sselpwd 4807 . . . 4 (⊤ → {∅} ∈ 𝒫 {∅, 1𝑜, 2𝑜})
65trud 1493 . . 3 {∅} ∈ 𝒫 {∅, 1𝑜, 2𝑜}
7 df3o2 38322 . . . 4 3𝑜 = {∅, 1𝑜, 2𝑜}
87pweqi 4162 . . 3 𝒫 3𝑜 = 𝒫 {∅, 1𝑜, 2𝑜}
96, 8eleqtrri 2700 . 2 {∅} ∈ 𝒫 3𝑜
10 0ex 4790 . . . . . . . 8 ∅ ∈ V
1110snss 4316 . . . . . . 7 (∅ ∈ {∅, 1𝑜, 2𝑜} ↔ {∅} ⊆ {∅, 1𝑜, 2𝑜})
124, 11sylibr 224 . . . . . 6 (⊤ → ∅ ∈ {∅, 1𝑜, 2𝑜})
13 snsstp3 4349 . . . . . . . 8 {2𝑜} ⊆ {∅, 1𝑜, 2𝑜}
1413a1i 11 . . . . . . 7 (⊤ → {2𝑜} ⊆ {∅, 1𝑜, 2𝑜})
15 2on 7568 . . . . . . . . 9 2𝑜 ∈ On
1615elexi 3213 . . . . . . . 8 2𝑜 ∈ V
1716snss 4316 . . . . . . 7 (2𝑜 ∈ {∅, 1𝑜, 2𝑜} ↔ {2𝑜} ⊆ {∅, 1𝑜, 2𝑜})
1814, 17sylibr 224 . . . . . 6 (⊤ → 2𝑜 ∈ {∅, 1𝑜, 2𝑜})
1912, 18prssd 4354 . . . . 5 (⊤ → {∅, 2𝑜} ⊆ {∅, 1𝑜, 2𝑜})
202, 19sselpwd 4807 . . . 4 (⊤ → {∅, 2𝑜} ∈ 𝒫 {∅, 1𝑜, 2𝑜})
2120trud 1493 . . 3 {∅, 2𝑜} ∈ 𝒫 {∅, 1𝑜, 2𝑜}
2221, 8eleqtrri 2700 . 2 {∅, 2𝑜} ∈ 𝒫 3𝑜
23 simpl 473 . . 3 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → {∅} ∈ 𝒫 3𝑜)
24 sseq1 3626 . . . . . 6 (𝑠 = {∅} → (𝑠𝑡 ↔ {∅} ⊆ 𝑡))
25 fveq2 6191 . . . . . . . 8 (𝑠 = {∅} → (𝐾𝑠) = (𝐾‘{∅}))
2625sseq1d 3632 . . . . . . 7 (𝑠 = {∅} → ((𝐾𝑠) ⊆ (𝐾𝑡) ↔ (𝐾‘{∅}) ⊆ (𝐾𝑡)))
2726notbid 308 . . . . . 6 (𝑠 = {∅} → (¬ (𝐾𝑠) ⊆ (𝐾𝑡) ↔ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡)))
2824, 27anbi12d 747 . . . . 5 (𝑠 = {∅} → ((𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡)) ↔ ({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡))))
2928rexbidv 3052 . . . 4 (𝑠 = {∅} → (∃𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡)) ↔ ∃𝑡 ∈ 𝒫 3𝑜({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡))))
3029adantl 482 . . 3 ((({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) ∧ 𝑠 = {∅}) → (∃𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡)) ↔ ∃𝑡 ∈ 𝒫 3𝑜({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡))))
31 simpr 477 . . . 4 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → {∅, 2𝑜} ∈ 𝒫 3𝑜)
32 fveq2 6191 . . . . . . . 8 (𝑡 = {∅, 2𝑜} → (𝐾𝑡) = (𝐾‘{∅, 2𝑜}))
3332sseq2d 3633 . . . . . . 7 (𝑡 = {∅, 2𝑜} → ((𝐾‘{∅}) ⊆ (𝐾𝑡) ↔ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜})))
3433notbid 308 . . . . . 6 (𝑡 = {∅, 2𝑜} → (¬ (𝐾‘{∅}) ⊆ (𝐾𝑡) ↔ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜})))
3534cleq2lem 37914 . . . . 5 (𝑡 = {∅, 2𝑜} → (({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡)) ↔ ({∅} ⊆ {∅, 2𝑜} ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜}))))
3635adantl 482 . . . 4 ((({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) ∧ 𝑡 = {∅, 2𝑜}) → (({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡)) ↔ ({∅} ⊆ {∅, 2𝑜} ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜}))))
37 1on 7567 . . . . . . . . 9 1𝑜 ∈ On
3837elexi 3213 . . . . . . . 8 1𝑜 ∈ V
3938prid2 4298 . . . . . . 7 1𝑜 ∈ {∅, 1𝑜}
40 iftrue 4092 . . . . . . . . 9 (𝑟 = {∅} → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = {∅, 1𝑜})
41 clsk1indlem.k . . . . . . . . 9 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
42 prex 4909 . . . . . . . . 9 {∅, 1𝑜} ∈ V
4340, 41, 42fvmpt 6282 . . . . . . . 8 ({∅} ∈ 𝒫 3𝑜 → (𝐾‘{∅}) = {∅, 1𝑜})
4443adantr 481 . . . . . . 7 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → (𝐾‘{∅}) = {∅, 1𝑜})
4539, 44syl5eleqr 2708 . . . . . 6 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → 1𝑜 ∈ (𝐾‘{∅}))
46 1n0 7575 . . . . . . . . . . 11 1𝑜 ≠ ∅
4746neii 2796 . . . . . . . . . 10 ¬ 1𝑜 = ∅
48 eqcom 2629 . . . . . . . . . . . 12 (1𝑜 = 2𝑜 ↔ 2𝑜 = 1𝑜)
49 df-2o 7561 . . . . . . . . . . . . 13 2𝑜 = suc 1𝑜
50 df-1o 7560 . . . . . . . . . . . . 13 1𝑜 = suc ∅
5149, 50eqeq12i 2636 . . . . . . . . . . . 12 (2𝑜 = 1𝑜 ↔ suc 1𝑜 = suc ∅)
52 suc11reg 8516 . . . . . . . . . . . 12 (suc 1𝑜 = suc ∅ ↔ 1𝑜 = ∅)
5348, 51, 523bitri 286 . . . . . . . . . . 11 (1𝑜 = 2𝑜 ↔ 1𝑜 = ∅)
5446, 53nemtbir 2889 . . . . . . . . . 10 ¬ 1𝑜 = 2𝑜
5547, 54pm3.2ni 899 . . . . . . . . 9 ¬ (1𝑜 = ∅ ∨ 1𝑜 = 2𝑜)
56 elpri 4197 . . . . . . . . 9 (1𝑜 ∈ {∅, 2𝑜} → (1𝑜 = ∅ ∨ 1𝑜 = 2𝑜))
5755, 56mto 188 . . . . . . . 8 ¬ 1𝑜 ∈ {∅, 2𝑜}
5857a1i 11 . . . . . . 7 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → ¬ 1𝑜 ∈ {∅, 2𝑜})
59 eqeq1 2626 . . . . . . . . . . 11 (𝑟 = {∅, 2𝑜} → (𝑟 = {∅} ↔ {∅, 2𝑜} = {∅}))
60 id 22 . . . . . . . . . . 11 (𝑟 = {∅, 2𝑜} → 𝑟 = {∅, 2𝑜})
6159, 60ifbieq2d 4111 . . . . . . . . . 10 (𝑟 = {∅, 2𝑜} → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if({∅, 2𝑜} = {∅}, {∅, 1𝑜}, {∅, 2𝑜}))
6216prid2 4298 . . . . . . . . . . . 12 2𝑜 ∈ {∅, 2𝑜}
63 2on0 7569 . . . . . . . . . . . . 13 2𝑜 ≠ ∅
64 nelsn 4212 . . . . . . . . . . . . 13 (2𝑜 ≠ ∅ → ¬ 2𝑜 ∈ {∅})
6563, 64ax-mp 5 . . . . . . . . . . . 12 ¬ 2𝑜 ∈ {∅}
66 nelneq2 2726 . . . . . . . . . . . 12 ((2𝑜 ∈ {∅, 2𝑜} ∧ ¬ 2𝑜 ∈ {∅}) → ¬ {∅, 2𝑜} = {∅})
6762, 65, 66mp2an 708 . . . . . . . . . . 11 ¬ {∅, 2𝑜} = {∅}
6867iffalsei 4096 . . . . . . . . . 10 if({∅, 2𝑜} = {∅}, {∅, 1𝑜}, {∅, 2𝑜}) = {∅, 2𝑜}
6961, 68syl6eq 2672 . . . . . . . . 9 (𝑟 = {∅, 2𝑜} → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = {∅, 2𝑜})
70 prex 4909 . . . . . . . . 9 {∅, 2𝑜} ∈ V
7169, 41, 70fvmpt 6282 . . . . . . . 8 ({∅, 2𝑜} ∈ 𝒫 3𝑜 → (𝐾‘{∅, 2𝑜}) = {∅, 2𝑜})
7271adantl 482 . . . . . . 7 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → (𝐾‘{∅, 2𝑜}) = {∅, 2𝑜})
7358, 72neleqtrrd 2723 . . . . . 6 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → ¬ 1𝑜 ∈ (𝐾‘{∅, 2𝑜}))
74 nelss 3664 . . . . . 6 ((1𝑜 ∈ (𝐾‘{∅}) ∧ ¬ 1𝑜 ∈ (𝐾‘{∅, 2𝑜})) → ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜}))
7545, 73, 74syl2anc 693 . . . . 5 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜}))
76 snsspr1 4345 . . . . 5 {∅} ⊆ {∅, 2𝑜}
7775, 76jctil 560 . . . 4 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → ({∅} ⊆ {∅, 2𝑜} ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅, 2𝑜})))
7831, 36, 77rspcedvd 3317 . . 3 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → ∃𝑡 ∈ 𝒫 3𝑜({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾𝑡)))
7923, 30, 78rspcedvd 3317 . 2 (({∅} ∈ 𝒫 3𝑜 ∧ {∅, 2𝑜} ∈ 𝒫 3𝑜) → ∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡)))
809, 22, 79mp2an 708 1 𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  {cpr 4179  {ctp 4181  cmpt 4729  Oncon0 5723  suc csuc 5725  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554  3𝑜c3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-1o 7560  df-2o 7561  df-3o 7562
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator