Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnmpt Structured version   Visualization version   GIF version

Theorem nelrnmpt 39257
Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
nelrnmpt.x 𝑥𝜑
nelrnmpt.f 𝐹 = (𝑥𝐴𝐵)
nelrnmpt.c (𝜑𝐶𝑉)
nelrnmpt.n ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
nelrnmpt (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem nelrnmpt
StepHypRef Expression
1 nelrnmpt.x . . . 4 𝑥𝜑
2 nelrnmpt.n . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
32neneqd 2799 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝐶 = 𝐵)
43ex 450 . . . 4 (𝜑 → (𝑥𝐴 → ¬ 𝐶 = 𝐵))
51, 4ralrimi 2957 . . 3 (𝜑 → ∀𝑥𝐴 ¬ 𝐶 = 𝐵)
6 ralnex 2992 . . 3 (∀𝑥𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥𝐴 𝐶 = 𝐵)
75, 6sylib 208 . 2 (𝜑 → ¬ ∃𝑥𝐴 𝐶 = 𝐵)
8 nelrnmpt.c . . 3 (𝜑𝐶𝑉)
9 nelrnmpt.f . . . 4 𝐹 = (𝑥𝐴𝐵)
109elrnmpt 5372 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
118, 10syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
127, 11mtbird 315 1 (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wne 2794  wral 2912  wrex 2913  cmpt 4729  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator