![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version |
Description: Deduction associated with nfnt 1782. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfnt 1782 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
This theorem is referenced by: nfand 1826 hbnt 2144 nfexd 2167 cbvexd 2278 nfexd2 2332 nfned 2895 nfneld 2905 nfrexd 3006 axpowndlem3 9421 axpowndlem4 9422 axregndlem2 9425 axregnd 9426 distel 31709 bj-cbvexdv 32736 |
Copyright terms: Public domain | W3C validator |