Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  distel Structured version   Visualization version   GIF version

Theorem distel 31709
Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 4847 and elirrv 8504.) (Contributed by Scott Fenton, 15-Dec-2010.)
Assertion
Ref Expression
distel (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)

Proof of Theorem distel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 el 4847 . . 3 𝑧 𝑥𝑧
2 df-ex 1705 . . . 4 (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥𝑧)
3 nfnae 2318 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 dveel1 2370 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥𝑧 → ∀𝑦 𝑥𝑧))
53, 4nf5d 2118 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥𝑧)
65nfnd 1785 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥𝑧)
7 elequ2 2004 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
87notbid 308 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦))
98a1i 11 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦)))
103, 6, 9cbvald 2277 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥𝑧 ↔ ∀𝑦 ¬ 𝑥𝑦))
1110notbid 308 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
122, 11syl5bb 272 . . 3 (¬ ∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
131, 12mpbii 223 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥𝑦)
14 elirrv 8504 . . . . 5 ¬ 𝑦𝑦
15 elequ1 1997 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑦𝑥𝑦))
1614, 15mtbii 316 . . . 4 (𝑦 = 𝑥 → ¬ 𝑥𝑦)
1716alimi 1739 . . 3 (∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥𝑦)
1817con3i 150 . 2 (¬ ∀𝑦 ¬ 𝑥𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1913, 18impbii 199 1 (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator