MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2031
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2047. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1710 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2027 . . 3 𝑥𝑥𝜑
3 nfa1 2028 . . 3 𝑥𝑥𝜑
42, 3nfim 1825 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1779 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  wex 1704  wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-10 2019
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  nfaldOLD  2166  nfeqf2  2297  nfsb4t  2389  nfnfc1  2767  sbcnestgf  3995  dfnfc2OLD  4455  bj-sbf4  32827  wl-equsal1t  33327  wl-sb6rft  33330  wl-sb8t  33333  wl-mo2tf  33353  wl-eutf  33355  wl-mo2t  33357  wl-mo3t  33358  wl-sb8eut  33359
  Copyright terms: Public domain W3C validator