MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnfc2OLD Structured version   Visualization version   GIF version

Theorem dfnfc2OLD 4455
Description: Obsolete proof of dfnfc2 4454 as of 26-Jul-2021. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfnfc2OLD (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem dfnfc2OLD
StepHypRef Expression
1 nfcvd 2765 . . . 4 (𝑥𝐴𝑥𝑦)
2 id 22 . . . 4 (𝑥𝐴𝑥𝐴)
31, 2nfeqd 2772 . . 3 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
43alrimiv 1855 . 2 (𝑥𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
5 simpr 477 . . . . . 6 ((∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴) → ∀𝑦𝑥 𝑦 = 𝐴)
6 df-nfc 2753 . . . . . . 7 (𝑥{𝐴} ↔ ∀𝑦𝑥 𝑦 ∈ {𝐴})
7 velsn 4193 . . . . . . . . 9 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
87nfbii 1778 . . . . . . . 8 (Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴)
98albii 1747 . . . . . . 7 (∀𝑦𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦𝑥 𝑦 = 𝐴)
106, 9bitri 264 . . . . . 6 (𝑥{𝐴} ↔ ∀𝑦𝑥 𝑦 = 𝐴)
115, 10sylibr 224 . . . . 5 ((∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴) → 𝑥{𝐴})
1211nfunid 4443 . . . 4 ((∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴) → 𝑥 {𝐴})
13 nfa1 2028 . . . . . 6 𝑥𝑥 𝐴𝑉
14 nfnf1 2031 . . . . . . 7 𝑥𝑥 𝑦 = 𝐴
1514nfal 2153 . . . . . 6 𝑥𝑦𝑥 𝑦 = 𝐴
1613, 15nfan 1828 . . . . 5 𝑥(∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴)
17 unisng 4452 . . . . . . 7 (𝐴𝑉 {𝐴} = 𝐴)
1817sps 2055 . . . . . 6 (∀𝑥 𝐴𝑉 {𝐴} = 𝐴)
1918adantr 481 . . . . 5 ((∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴) → {𝐴} = 𝐴)
2016, 19nfceqdf 2760 . . . 4 ((∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴) → (𝑥 {𝐴} ↔ 𝑥𝐴))
2112, 20mpbid 222 . . 3 ((∀𝑥 𝐴𝑉 ∧ ∀𝑦𝑥 𝑦 = 𝐴) → 𝑥𝐴)
2221ex 450 . 2 (∀𝑥 𝐴𝑉 → (∀𝑦𝑥 𝑦 = 𝐴𝑥𝐴))
234, 22impbid2 216 1 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  {csn 4177   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator