![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4730 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2758 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2780 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1828 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 4718 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 {copab 4712 ↦ cmpt 4729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-opab 4713 df-mpt 4730 |
This theorem is referenced by: ovmpt3rab1 6891 mpt2curryvald 7396 nfrdg 7510 mapxpen 8126 nfoi 8419 seqof2 12859 nfsum1 14420 nfsum 14421 fsumrlim 14543 fsumo1 14544 nfcprod1 14640 nfcprod 14641 gsum2d2 18373 prdsgsum 18377 dprd2d2 18443 gsumdixp 18609 mpfrcl 19518 ptbasfi 21384 ptcnplem 21424 ptcnp 21425 cnmptk2 21489 cnmpt2k 21491 xkocnv 21617 fsumcn 22673 itg2cnlem1 23528 nfitg 23541 itgfsum 23593 dvmptfsum 23738 itgulm2 24163 lgamgulm2 24762 fmptcof2 29457 fpwrelmap 29508 nfesum2 30103 sigapildsys 30225 oms0 30359 bnj1366 30900 nosupbnd2 31862 poimirlem26 33435 cdleme32d 35732 cdleme32f 35734 cdlemksv2 36135 cdlemkuv2 36155 hlhilset 37226 aomclem8 37631 binomcxplemdvsum 38554 refsum2cn 39197 wessf1ornlem 39371 fmuldfeq 39815 fprodcnlem 39831 fprodcn 39832 fnlimfv 39895 fnlimcnv 39899 fnlimfvre 39906 fnlimfvre2 39909 fnlimf 39910 fnlimabslt 39911 fprodcncf 40114 dvnmptdivc 40153 dvmptfprod 40160 dvnprodlem1 40161 stoweidlem26 40243 stoweidlem31 40248 stoweidlem34 40251 stoweidlem35 40252 stoweidlem42 40259 stoweidlem48 40265 stoweidlem59 40276 fourierdlem31 40355 fourierdlem112 40435 sge0iunmptlemfi 40630 sge0iunmptlemre 40632 sge0iunmpt 40635 hoicvrrex 40770 ovncvrrp 40778 ovnhoilem1 40815 ovnlecvr2 40824 vonicc 40899 smflim 40985 smfmullem4 41001 smflim2 41012 smflimmpt 41016 smfsup 41020 smfsupmpt 41021 smfinf 41024 smfinfmpt 41025 smflimsuplem2 41027 smflimsuplem5 41030 smflimsup 41034 smflimsupmpt 41035 smfliminf 41037 smfliminfmpt 41038 aacllem 42547 |
Copyright terms: Public domain | W3C validator |