MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4172
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4160 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2764 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3596 . . 3 𝑥 𝑦𝐴
54nfab 2769 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2762 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2608  wnfc 2751  wss 3574  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  esum2d  30155  ldsysgenld  30223  stoweidlem57  40274  sge0iunmptlemre  40632
  Copyright terms: Public domain W3C validator