![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version |
Description: If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4168 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
2 | 1 | sseld 3602 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
3 | 2 | impcom 446 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 𝒫 cpw 4158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
This theorem is referenced by: unipw 4918 axdc2lem 9270 axdc3lem4 9275 homarel 16686 txdis 21435 uhgredgrnv 26025 fpwrelmap 29508 insiga 30200 measinblem 30283 ddemeas 30299 imambfm 30324 totprobd 30488 dstrvprob 30533 ballotlem2 30550 scmsuppss 42153 lincvalsc0 42210 linc0scn0 42212 lincdifsn 42213 linc1 42214 lincsum 42218 lincscm 42219 lcoss 42225 lincext3 42245 islindeps2 42272 |
Copyright terms: Public domain | W3C validator |