MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4171
Description: If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4168 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 3602 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 446 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  unipw  4918  axdc2lem  9270  axdc3lem4  9275  homarel  16686  txdis  21435  uhgredgrnv  26025  fpwrelmap  29508  insiga  30200  measinblem  30283  ddemeas  30299  imambfm  30324  totprobd  30488  dstrvprob  30533  ballotlem2  30550  scmsuppss  42153  lincvalsc0  42210  linc0scn0  42212  lincdifsn  42213  linc1  42214  lincsum  42218  lincscm  42219  lcoss  42225  lincext3  42245  islindeps2  42272
  Copyright terms: Public domain W3C validator