Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmptlemre Structured version   Visualization version   GIF version

Theorem sge0iunmptlemre 40632
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmptlemre.a (𝜑𝐴𝑉)
sge0iunmptlemre.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmptlemre.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmptlemre.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
sge0iunmptlemre.re ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
sge0iunmptlemre.sxr (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
sge0iunmptlemre.ssxr (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
sge0iunmptlemre.f (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
sge0iunmptlemre.iue (𝜑 𝑥𝐴 𝐵 ∈ V)
Assertion
Ref Expression
sge0iunmptlemre (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmptlemre
Dummy variables 𝑏 𝑝 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0iunmptlemre.sxr . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
2 sge0iunmptlemre.ssxr . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
3 elpwinss 39216 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 𝑥𝐴 𝐵)
43resmptd 5452 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → ((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦) = (𝑘𝑦𝐶))
54fveq2d 6195 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
65adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
7 elinel2 3800 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
87adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝑦 ∈ Fin)
93sselda 3603 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → 𝑘 𝑥𝐴 𝐵)
10 eliun 4524 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
119, 10sylib 208 . . . . . . . . . 10 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
1211adantll 750 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
13 nfv 1843 . . . . . . . . . . . 12 𝑥𝜑
14 nfcv 2764 . . . . . . . . . . . . 13 𝑥𝑦
15 nfiu1 4550 . . . . . . . . . . . . . . 15 𝑥 𝑥𝐴 𝐵
1615nfpw 4172 . . . . . . . . . . . . . 14 𝑥𝒫 𝑥𝐴 𝐵
17 nfcv 2764 . . . . . . . . . . . . . 14 𝑥Fin
1816, 17nfin 3820 . . . . . . . . . . . . 13 𝑥(𝒫 𝑥𝐴 𝐵 ∩ Fin)
1914, 18nfel 2777 . . . . . . . . . . . 12 𝑥 𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)
2013, 19nfan 1828 . . . . . . . . . . 11 𝑥(𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
21 nfv 1843 . . . . . . . . . . 11 𝑥 𝑘𝑦
2220, 21nfan 1828 . . . . . . . . . 10 𝑥((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦)
23 nfv 1843 . . . . . . . . . 10 𝑥 𝐶 ∈ (0[,)+∞)
24 simp3 1063 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝑘𝐵)
25 sge0iunmptlemre.c . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
26 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
2726fvmpt2 6291 . . . . . . . . . . . . . . 15 ((𝑘𝐵𝐶 ∈ (0[,]+∞)) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2824, 25, 27syl2anc 693 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2928eqcomd 2628 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 = ((𝑘𝐵𝐶)‘𝑘))
30253expa 1265 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
3130, 26fmptd 6385 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
32313adant3 1081 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
33 sge0iunmptlemre.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑊)
34333adant3 1081 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → 𝐵𝑊)
35 sge0iunmptlemre.re . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
36353adant3 1081 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
3734, 32, 36sge0rern 40605 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → ¬ +∞ ∈ ran (𝑘𝐵𝐶))
3832, 37fge0iccico 40587 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,)+∞))
3938, 24ffvelrnd 6360 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) ∈ (0[,)+∞))
4029, 39eqeltrd 2701 . . . . . . . . . . . 12 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞))
41403exp 1264 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4241ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4322, 23, 42rexlimd 3026 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,)+∞)))
4412, 43mpd 15 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → 𝐶 ∈ (0[,)+∞))
458, 44sge0fsummpt 40607 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑦𝐶)) = Σ𝑘𝑦 𝐶)
46 sseqin2 3817 . . . . . . . . . . . . . 14 (𝑦 𝑥𝐴 𝐵 ↔ ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4746biimpi 206 . . . . . . . . . . . . 13 (𝑦 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4847eqcomd 2628 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵𝑦 = ( 𝑥𝐴 𝐵𝑦))
49 iunin1 4585 . . . . . . . . . . . . 13 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦)
5049a1i 11 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦))
5148, 50eqtr4d 2659 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵𝑦 = 𝑥𝐴 (𝐵𝑦))
523, 51syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 = 𝑥𝐴 (𝐵𝑦))
5352sumeq1d 14431 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
5453adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
55 simpl 473 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝜑)
5633adantlr 751 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴) → 𝐵𝑊)
57 sge0iunmptlemre.dj . . . . . . . . . . 11 (𝜑Disj 𝑥𝐴 𝐵)
5857adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → Disj 𝑥𝐴 𝐵)
59 rge0ssre 12280 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
60 ax-resscn 9993 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
6159, 60sstri 3612 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
6261, 40sseldi 3601 . . . . . . . . . . 11 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
63623adant1r 1319 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
64 simpr 477 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → 𝑦 ∈ Fin)
6556, 58, 63, 64fsumiunss 39807 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6655, 8, 65syl2anc 693 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6754, 66eqtrd 2656 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
686, 45, 673eqtrd 2660 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6956, 58, 64disjinfi 39380 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ Fin)
70 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → 𝑦 ∈ Fin)
71 inss2 3834 . . . . . . . . . . . . . 14 (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦
7271a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦)
73 ssfi 8180 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7470, 72, 73syl2anc 693 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7574ad2antlr 763 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
76 simpll 790 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
77 elrabi 3359 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑤𝐴)
7877ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
79 elinel1 3799 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) → 𝑘𝑤 / 𝑥𝐵)
8079adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
81 nfv 1843 . . . . . . . . . . . . . . . 16 𝑥 𝑤𝐴
82 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑥𝑘
83 nfcsb1v 3549 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
8482, 83nfel 2777 . . . . . . . . . . . . . . . 16 𝑥 𝑘𝑤 / 𝑥𝐵
8513, 81, 84nf3an 1831 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)
8685, 23nfim 1825 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
87 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
88 csbeq1a 3542 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
8988eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑘𝐵𝑘𝑤 / 𝑥𝐵))
9087, 893anbi23d 1402 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)))
9190imbi1d 331 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))))
9286, 91, 40chvar 2262 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
9376, 78, 80, 92syl3anc 1326 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9493adantllr 755 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9575, 94fsumge0cl 39805 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶 ∈ (0[,)+∞))
9669, 95sge0fsummpt 40607 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
97 inss2 3834 . . . . . . . . . . . . . . . . 17 (𝐵𝑦) ⊆ 𝑦
9897a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin → (𝐵𝑦) ⊆ 𝑦)
99 ssfi 8180 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ (𝐵𝑦) ⊆ 𝑦) → (𝐵𝑦) ∈ Fin)
10070, 98, 99syl2anc 693 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝐵𝑦) ∈ Fin)
101100ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝐵𝑦) ∈ Fin)
102 simpll 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝜑)
103 rabid 3116 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↔ (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
104103biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
105104simpld 475 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑥𝐴)
106105ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑥𝐴)
107 elinel1 3799 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝑦) → 𝑘𝐵)
108107adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑘𝐵)
109102, 106, 108, 40syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
110109adantllr 755 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
111101, 110sge0fsummpt 40607 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = Σ𝑘 ∈ (𝐵𝑦)𝐶)
112111mpteq2dva 4744 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶))
113 nfrab1 3122 . . . . . . . . . . . . . 14 𝑥{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
114 nfcv 2764 . . . . . . . . . . . . . 14 𝑤{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
115 nfcv 2764 . . . . . . . . . . . . . 14 𝑤Σ𝑘 ∈ (𝐵𝑦)𝐶
11683, 14nfin 3820 . . . . . . . . . . . . . . 15 𝑥(𝑤 / 𝑥𝐵𝑦)
117 nfcv 2764 . . . . . . . . . . . . . . 15 𝑥𝐶
118116, 117nfsum 14421 . . . . . . . . . . . . . 14 𝑥Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
11988ineq1d 3813 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐵𝑦) = (𝑤 / 𝑥𝐵𝑦))
120119sumeq1d 14431 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
121113, 114, 115, 118, 120cbvmptf 4748 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
122121a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶))
123112, 122eqtr2d 2657 . . . . . . . . . . 11 ((𝜑𝑦 ∈ Fin) → (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
124123fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
125124eqcomd 2628 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)))
126120, 114, 113, 115, 118cbvsum 14425 . . . . . . . . . 10 Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
127126a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
12896, 125, 1273eqtr4d 2666 . . . . . . . 8 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
12955, 8, 128syl2anc 693 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
130129eqcomd 2628 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
13168, 130eqtrd 2656 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
132 sge0iunmptlemre.a . . . . . . . . 9 (𝜑𝐴𝑉)
13377ssriv 3607 . . . . . . . . . 10 {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴
134133a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴)
135132, 134ssexd 4805 . . . . . . . 8 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ V)
136 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
137136inex2 4800 . . . . . . . . . . . 12 (𝑤 / 𝑥𝐵𝑦) ∈ V
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 / 𝑥𝐵𝑦) ∈ V)
139 icossicc 12260 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
140 simpll 790 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
141 simplr 792 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
14279adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
143140, 141, 142, 92syl3anc 1326 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
144139, 143sseldi 3601 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
145 eqid 2622 . . . . . . . . . . . 12 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
146144, 145fmptd 6385 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶):(𝑤 / 𝑥𝐵𝑦)⟶(0[,]+∞))
147138, 146sge0cl 40598 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
14877, 147sylan2 491 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
149 nfcv 2764 . . . . . . . . . 10 𝑤^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))
150 nfcv 2764 . . . . . . . . . . 11 𝑥Σ^
151116, 117nfmpt 4746 . . . . . . . . . . 11 𝑥(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
152150, 151nffv 6198 . . . . . . . . . 10 𝑥^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
153119mpteq1d 4738 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
154153fveq2d 6195 . . . . . . . . . 10 (𝑥 = 𝑤 → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
155113, 114, 149, 152, 154cbvmptf 4748 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
156148, 155fmptd 6385 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))):{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}⟶(0[,]+∞))
157135, 156sge0xrcl 40602 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
158157adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
159 eqid 2622 . . . . . . . . 9 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
160147, 159fmptd 6385 . . . . . . . 8 (𝜑 → (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))):𝐴⟶(0[,]+∞))
161132, 160sge0xrcl 40602 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
162161adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
16355, 2syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
164155fveq2i 6194 . . . . . . . . 9 ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))))
165164a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
166132, 147, 134sge0lessmpt 40616 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
167165, 166eqbrtrd 4675 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
168167adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
169149, 152, 154cbvmpt 4749 . . . . . . . . . . 11 (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
170169eqcomi 2631 . . . . . . . . . 10 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))
171170fveq2i 6194 . . . . . . . . 9 ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
172171a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
173136inex2 4800 . . . . . . . . . . 11 (𝐵𝑦) ∈ V
174173a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ∈ V)
175107, 30sylan2 491 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
176 eqid 2622 . . . . . . . . . . 11 (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝐵𝑦) ↦ 𝐶)
177175, 176fmptd 6385 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶):(𝐵𝑦)⟶(0[,]+∞))
178174, 177sge0cl 40598 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
17933, 31sge0cl 40598 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
180 inss1 3833 . . . . . . . . . . 11 (𝐵𝑦) ⊆ 𝐵
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ⊆ 𝐵)
18233, 30, 181sge0lessmpt 40616 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ≤ (Σ^‘(𝑘𝐵𝐶)))
18313, 132, 178, 179, 182sge0lempt 40627 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
184172, 183eqbrtrd 4675 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
185184adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
186158, 162, 163, 168, 185xrletrd 11993 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
187131, 186eqbrtrd 4675 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
188187ralrimiva 2966 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
189 sge0iunmptlemre.iue . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ V)
190 sge0iunmptlemre.f . . . 4 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
191189, 190, 2sge0lefi 40615 . . 3 (𝜑 → ((Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
192188, 191mpbird 247 . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
193 elpwinss 39216 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
194193resmptd 5452 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦) = (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))))
195194fveq2d 6195 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
196195adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
197 elinel2 3800 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
198197adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
199 0xr 10086 . . . . . . . . 9 0 ∈ ℝ*
200199a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
201 pnfxr 10092 . . . . . . . . 9 +∞ ∈ ℝ*
202201a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
203 simpll 790 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
204193sselda 3603 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
205204adantll 750 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
206203, 205, 33syl2anc 693 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵𝑊)
207203, 205, 31syl2anc 693 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
208206, 207sge0xrcl 40602 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ*)
209206, 207sge0ge0 40601 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ≤ (Σ^‘(𝑘𝐵𝐶)))
210203, 205, 35syl2anc 693 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
211 ltpnf 11954 . . . . . . . . 9 ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ → (Σ^‘(𝑘𝐵𝐶)) < +∞)
212210, 211syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) < +∞)
213200, 202, 208, 209, 212elicod 12224 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
214198, 213sge0fsummpt 40607 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
215196, 214eqtrd 2656 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
216 nfv 1843 . . . . . 6 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
217189adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴 𝐵 ∈ V)
218190mptex2 6384 . . . . . . 7 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
219218adantlr 751 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
220198, 210fsumrecl 14465 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ)
221220rexrd 10089 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
222 nfv 1843 . . . . . . . 8 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
223 iunss1 4532 . . . . . . . . . . . 12 (𝑦𝐴 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
224193, 223syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
225224adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
226217, 225ssexd 4805 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
227226adantr 481 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑥𝑦 𝐵 ∈ V)
228 simpll 790 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝜑)
229225sselda 3603 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝑘 𝑥𝐴 𝐵)
230228, 229, 218syl2anc 693 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
231230adantlr 751 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
232 simpr 477 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑝 ∈ ℝ+)
233193adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
23457adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝐴 𝐵)
235 disjss1 4626 . . . . . . . . . . . 12 (𝑦𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝑦 𝐵))
236233, 234, 235sylc 65 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝑦 𝐵)
2372033adant3 1081 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝜑)
2382053adant3 1081 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑥𝐴)
239 simp3 1063 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑘𝐵)
240237, 238, 239, 25syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
241198, 206, 236, 240, 210sge0iunmptlemfi 40630 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
242214, 220eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ)
243241, 242eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
244243adantr 481 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
245222, 227, 231, 232, 244sge0ltfirpmpt 40625 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
246 nfv 1843 . . . . . . . 8 𝑏((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
247 nfre1 3005 . . . . . . . 8 𝑏𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)
248 sspwb 4917 . . . . . . . . . . . . . . . . . 18 ( 𝑥𝑦 𝐵 𝑥𝐴 𝐵 ↔ 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
249248biimpi 206 . . . . . . . . . . . . . . . . 17 ( 𝑥𝑦 𝐵 𝑥𝐴 𝐵 → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
250223, 249syl 17 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
251193, 250syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
252251adantr 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
253 elinel1 3799 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
254253adantl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
255252, 254sseldd 3604 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝐴 𝐵)
256 elinel2 3800 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
257256adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
258255, 257elind 3798 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
259258ad4ant24 1298 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
2602593adant3 1081 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
261221ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
2622613adant3 1081 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
263 nfv 1843 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin))
264226adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
265230adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
266243adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
267253elpwid 4170 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 𝑥𝑦 𝐵)
268267adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 𝑥𝑦 𝐵)
269263, 264, 265, 266, 268sge0ssrempt 40622 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
270269rexrd 10089 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
271270adantlr 751 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
272 rpxr 11840 . . . . . . . . . . . . . 14 (𝑝 ∈ ℝ+𝑝 ∈ ℝ*)
273272ad2antlr 763 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ*)
274271, 273xaddcld 12131 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
2752743adant3 1081 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
276 simp3 1063 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
277241, 214eqtr2d 2657 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
278277adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
2792783ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
280269adantlr 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
281 rpre 11839 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℝ+𝑝 ∈ ℝ)
282281ad2antlr 763 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ)
283 rexadd 12063 . . . . . . . . . . . . . . 15 (((Σ^‘(𝑘𝑏𝐶)) ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
284280, 282, 283syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
2852843adant3 1081 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
286279, 285breq12d 4666 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ↔ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)))
287276, 286mpbird 247 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
288262, 275, 287xrltled 39486 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
289 rspe 3003 . . . . . . . . . 10 ((𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
290260, 288, 289syl2anc 693 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
2912903exp 1264 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))))
292246, 247, 291rexlimd 3026 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)))
293245, 292mpd 15 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
294216, 217, 219, 221, 293sge0gerpmpt 40619 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
295215, 294eqbrtrd 4675 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
296295ralrimiva 2966 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
297 eqid 2622 . . . . 5 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
298179, 297fmptd 6385 . . . 4 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
299132, 298, 1sge0lefi 40615 . . 3 (𝜑 → ((Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶))))
300296, 299mpbird 247 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
3011, 2, 192, 300xrletrid 11986 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  csb 3533  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   ciun 4520  Disj wdisj 4620   class class class wbr 4653  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  +crp 11832   +𝑒 cxad 11944  [,)cico 12177  [,]cicc 12178  Σcsu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0iunmpt  40635
  Copyright terms: Public domain W3C validator