| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nic-idel | Structured version Visualization version GIF version | ||
| Description: Inference to remove the trailing term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nic-idel.1 | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) |
| Ref | Expression |
|---|---|
| nic-idel | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nic-id 1603 | . . 3 ⊢ (𝜒 ⊼ (𝜒 ⊼ 𝜒)) | |
| 2 | 1 | nic-isw1 1605 | . 2 ⊢ ((𝜒 ⊼ 𝜒) ⊼ 𝜒) |
| 3 | nic-idel.1 | . . 3 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
| 4 | 3 | nic-imp 1600 | . 2 ⊢ (((𝜒 ⊼ 𝜒) ⊼ 𝜒) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜑 ⊼ (𝜒 ⊼ 𝜒)))) |
| 5 | 2, 4 | nic-mp 1596 | 1 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊼ wnan 1447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
| This theorem is referenced by: nic-bi1 1613 nic-bi2 1614 nic-luk1 1616 |
| Copyright terms: Public domain | W3C validator |