![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nic-mp | Structured version Visualization version GIF version |
Description: Derive Nicod's rule of modus ponens using 'nand', from the standard one. Although the major and minor premise together also imply 𝜒, this form is necessary for useful derivations from nic-ax 1598. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-jmin | ⊢ 𝜑 |
nic-jmaj | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) |
Ref | Expression |
---|---|
nic-mp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin | . 2 ⊢ 𝜑 | |
2 | nic-jmaj | . . . 4 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
3 | nannan 1451 | . . . 4 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ (𝜑 → (𝜒 ∧ 𝜓))) | |
4 | 2, 3 | mpbi 220 | . . 3 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
5 | 4 | simprd 479 | . 2 ⊢ (𝜑 → 𝜓) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ⊼ wnan 1447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
This theorem is referenced by: nic-imp 1600 nic-idlem2 1602 nic-id 1603 nic-swap 1604 nic-isw1 1605 nic-isw2 1606 nic-iimp1 1607 nic-idel 1609 nic-ich 1610 nic-stdmp 1615 nic-luk1 1616 nic-luk2 1617 nic-luk3 1618 lukshefth1 1620 lukshefth2 1621 renicax 1622 |
Copyright terms: Public domain | W3C validator |