| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nic-imp | Structured version Visualization version GIF version | ||
| Description: Inference for nic-mp 1596 using nic-ax 1598 as major premise. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nic-imp.1 | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) |
| Ref | Expression |
|---|---|
| nic-imp | ⊢ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nic-imp.1 | . 2 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
| 2 | nic-ax 1598 | . 2 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | |
| 3 | 1, 2 | nic-mp 1596 | 1 ⊢ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊼ wnan 1447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
| This theorem is referenced by: nic-idlem1 1601 nic-idlem2 1602 nic-isw2 1606 nic-iimp1 1607 nic-idel 1609 nic-ich 1610 nic-idbl 1611 nic-luk1 1616 |
| Copyright terms: Public domain | W3C validator |