MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npss0OLD Structured version   Visualization version   GIF version

Theorem npss0OLD 4015
Description: Obsolete proof of npss0 4014 as of 14-Jul-2021. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
npss0OLD ¬ 𝐴 ⊊ ∅

Proof of Theorem npss0OLD
StepHypRef Expression
1 0ss 3972 . . . 4 ∅ ⊆ 𝐴
21a1i 11 . . 3 (𝐴 ⊆ ∅ → ∅ ⊆ 𝐴)
3 iman 440 . . 3 ((𝐴 ⊆ ∅ → ∅ ⊆ 𝐴) ↔ ¬ (𝐴 ⊆ ∅ ∧ ¬ ∅ ⊆ 𝐴))
42, 3mpbi 220 . 2 ¬ (𝐴 ⊆ ∅ ∧ ¬ ∅ ⊆ 𝐴)
5 dfpss3 3693 . 2 (𝐴 ⊊ ∅ ↔ (𝐴 ⊆ ∅ ∧ ¬ ∅ ⊆ 𝐴))
64, 5mtbir 313 1 ¬ 𝐴 ⊊ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wss 3574  wpss 3575  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator