HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocel Structured version   Visualization version   GIF version

Theorem ocel 28140
Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocel (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴

Proof of Theorem ocel
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ocval 28139 . . 3 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑦 ∈ ℋ ∣ ∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0})
21eleq2d 2687 . 2 (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ 𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0}))
3 oveq1 6657 . . . . 5 (𝑦 = 𝐴 → (𝑦 ·ih 𝑥) = (𝐴 ·ih 𝑥))
43eqeq1d 2624 . . . 4 (𝑦 = 𝐴 → ((𝑦 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝑥) = 0))
54ralbidv 2986 . . 3 (𝑦 = 𝐴 → (∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0 ↔ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0))
65elrab 3363 . 2 (𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0} ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0))
72, 6syl6bb 276 1 (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574  cfv 5888  (class class class)co 6650  0cc0 9936  chil 27776   ·ih csp 27779  cort 27787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oc 28109
This theorem is referenced by:  shocel  28141  ocsh  28142  ocorth  28150  ococss  28152  occllem  28162  occl  28163  chocnul  28187  h1deoi  28408  h1dei  28409  hmopidmpji  29011
  Copyright terms: Public domain W3C validator