MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvfval Structured version   Visualization version   GIF version

Theorem ocvfval 20010
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvfval (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Distinct variable groups:   𝑥,𝑠,𝑦, 0   𝑉,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   , ,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑠)   (𝑥,𝑦,𝑠)   𝑋(𝑥,𝑦,𝑠)

Proof of Theorem ocvfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ocvfval.o . 2 = (ocv‘𝑊)
2 elex 3212 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6191 . . . . . . 7 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 ocvfval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2674 . . . . . 6 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4163 . . . . 5 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6191 . . . . . . . . . 10 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 ocvfval.i . . . . . . . . . 10 , = (·𝑖𝑊)
97, 8syl6eqr 2674 . . . . . . . . 9 ( = 𝑊 → (·𝑖) = , )
109oveqd 6667 . . . . . . . 8 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6191 . . . . . . . . . . 11 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 ocvfval.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1311, 12syl6eqr 2674 . . . . . . . . . 10 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6195 . . . . . . . . 9 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
15 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1614, 15syl6eqr 2674 . . . . . . . 8 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
1710, 16eqeq12d 2637 . . . . . . 7 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ (𝑥 , 𝑦) = 0 ))
1817ralbidv 2986 . . . . . 6 ( = 𝑊 → (∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 ))
195, 18rabeqbidv 3195 . . . . 5 ( = 𝑊 → {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))} = {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
206, 19mpteq12dv 4733 . . . 4 ( = 𝑊 → (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
21 df-ocv 20007 . . . 4 ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
22 eqid 2622 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
23 ssrab2 3687 . . . . . . . 8 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
24 fvex 6201 . . . . . . . . . 10 (Base‘𝑊) ∈ V
254, 24eqeltri 2697 . . . . . . . . 9 𝑉 ∈ V
2625elpw2 4828 . . . . . . . 8 ({𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉 ↔ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉)
2723, 26mpbir 221 . . . . . . 7 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉
2827a1i 11 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉)
2922, 28fmpti 6383 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉
3025pwex 4848 . . . . 5 𝒫 𝑉 ∈ V
31 fex2 7121 . . . . 5 (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V)
3229, 30, 30, 31mp3an 1424 . . . 4 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V
3320, 21, 32fvmpt 6282 . . 3 (𝑊 ∈ V → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
342, 33syl 17 . 2 (𝑊𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
351, 34syl5eq 2668 1 (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944  ·𝑖cip 15946  0gc0g 16100  ocvcocv 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-ocv 20007
This theorem is referenced by:  ocvval  20011  elocv  20012
  Copyright terms: Public domain W3C validator