MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1stb Structured version   Visualization version   GIF version

Theorem op1stb 4940
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 5619 to extract the second member, op1sta 5617 for an alternate version, and op1st 7176 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 4401 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 4479 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 4908 . . . . . 6 {𝐴} ∈ V
6 prex 4909 . . . . . 6 {𝐴, 𝐵} ∈ V
75, 6intpr 4510 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
8 snsspr1 4345 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 df-ss 3588 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
108, 9mpbi 220 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
117, 10eqtri 2644 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
124, 11eqtri 2644 . . 3 𝐴, 𝐵⟩ = {𝐴}
1312inteqi 4479 . 2 𝐴, 𝐵⟩ = {𝐴}
141intsn 4513 . 2 {𝐴} = 𝐴
1513, 14eqtri 2644 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  {csn 4177  {cpr 4179  cop 4183   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476
This theorem is referenced by:  elreldm  5350  op2ndb  5619  elxp5  7111  1stval2  7185  fundmen  8030  xpsnen  8044
  Copyright terms: Public domain W3C validator