MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid2 Structured version   Visualization version   GIF version

Theorem opabid2 5251
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem opabid2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4 𝑧 ∈ V
2 vex 3203 . . . 4 𝑤 ∈ V
3 opeq1 4402 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
43eleq1d 2686 . . . 4 (𝑥 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 opeq2 4403 . . . . 5 (𝑦 = 𝑤 → ⟨𝑧, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
65eleq1d 2686 . . . 4 (𝑦 = 𝑤 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴))
71, 2, 4, 6opelopab 4997 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
87gen2 1723 . 2 𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
9 relopab 5247 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴}
10 eqrel 5209 . . 3 ((Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ∧ Rel 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
119, 10mpan 706 . 2 (Rel 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
128, 11mpbiri 248 1 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481   = wceq 1483  wcel 1990  cop 4183  {copab 4712  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  opabbi2dv  5271  opabssi  34130
  Copyright terms: Public domain W3C validator