![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbi2dv | Structured version Visualization version GIF version |
Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2742. (Contributed by NM, 24-Feb-2014.) |
Ref | Expression |
---|---|
opabbi2dv.1 | ⊢ Rel 𝐴 |
opabbi2dv.3 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
opabbi2dv | ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbi2dv.1 | . . 3 ⊢ Rel 𝐴 | |
2 | opabid2 5251 | . . 3 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 |
4 | opabbi2dv.3 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) | |
5 | 4 | opabbidv 4716 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
6 | 3, 5 | syl5eqr 2670 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 〈cop 4183 {copab 4712 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-rel 5121 |
This theorem is referenced by: recmulnq 9786 dmscut 31918 dib1dim 36454 |
Copyright terms: Public domain | W3C validator |