MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabgf Structured version   Visualization version   GIF version

Theorem opelopabgf 4995
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4993 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Hypotheses
Ref Expression
opelopabgf.x 𝑥𝜓
opelopabgf.y 𝑦𝜒
opelopabgf.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabgf.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabgf ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabgf
StepHypRef Expression
1 opelopabsb 4985 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 nfcv 2764 . . . . 5 𝑥𝐵
3 opelopabgf.x . . . . 5 𝑥𝜓
42, 3nfsbc 3457 . . . 4 𝑥[𝐵 / 𝑦]𝜓
5 opelopabgf.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
65sbcbidv 3490 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
74, 6sbciegf 3467 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
8 opelopabgf.y . . . 4 𝑦𝜒
9 opelopabgf.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
108, 9sbciegf 3467 . . 3 (𝐵𝑊 → ([𝐵 / 𝑦]𝜓𝜒))
117, 10sylan9bb 736 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜒))
121, 11syl5bb 272 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  [wsbc 3435  cop 4183  {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713
This theorem is referenced by:  oprabv  6703
  Copyright terms: Public domain W3C validator