![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnoncon | Structured version Visualization version GIF version |
Description: Law of contradiction for orthoposets. (chocin 28354 analog.) (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
opnoncon.b | ⊢ 𝐵 = (Base‘𝐾) |
opnoncon.o | ⊢ ⊥ = (oc‘𝐾) |
opnoncon.m | ⊢ ∧ = (meet‘𝐾) |
opnoncon.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
opnoncon | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnoncon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2622 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opnoncon.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2622 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | opnoncon.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
6 | opnoncon.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
7 | eqid 2622 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 34469 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
9 | 8 | 3anidm23 1385 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
10 | 9 | simp3d 1075 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 occoc 15949 joincjn 16944 meetcmee 16945 0.cp0 17037 1.cp1 17038 OPcops 34459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-oposet 34463 |
This theorem is referenced by: omlfh1N 34545 omlspjN 34548 atlatmstc 34606 pnonsingN 35219 lhpocnle 35302 dochnoncon 36680 |
Copyright terms: Public domain | W3C validator |