Proof of Theorem pnonsingN
| Step | Hyp | Ref
| Expression |
| 1 | | 2polat.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 2 | | 2polat.p |
. . . . 5
⊢ 𝑃 =
(⊥𝑃‘𝐾) |
| 3 | 1, 2 | 2polssN 35201 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ (𝑃‘(𝑃‘𝑋))) |
| 4 | | ssrin 3838 |
. . . 4
⊢ (𝑋 ⊆ (𝑃‘(𝑃‘𝑋)) → (𝑋 ∩ (𝑃‘𝑋)) ⊆ ((𝑃‘(𝑃‘𝑋)) ∩ (𝑃‘𝑋))) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) ⊆ ((𝑃‘(𝑃‘𝑋)) ∩ (𝑃‘𝑋))) |
| 6 | | eqid 2622 |
. . . . . 6
⊢
(lub‘𝐾) =
(lub‘𝐾) |
| 7 | | eqid 2622 |
. . . . . 6
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
| 8 | 6, 1, 7, 2 | 2polvalN 35200 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑃‘(𝑃‘𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
| 9 | | eqid 2622 |
. . . . . 6
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 10 | 6, 9, 1, 7, 2 | polval2N 35192 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
| 11 | 8, 10 | ineq12d 3815 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((𝑃‘(𝑃‘𝑋)) ∩ (𝑃‘𝑋)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))) |
| 12 | | hlop 34649 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
| 14 | | hlclat 34645 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| 15 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 16 | 15, 1 | atssbase 34577 |
. . . . . . . . 9
⊢ 𝐴 ⊆ (Base‘𝐾) |
| 17 | | sstr 3611 |
. . . . . . . . 9
⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) |
| 18 | 16, 17 | mpan2 707 |
. . . . . . . 8
⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 19 | 15, 6 | clatlubcl 17112 |
. . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 20 | 14, 18, 19 | syl2an 494 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 21 | | eqid 2622 |
. . . . . . . 8
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 22 | | eqid 2622 |
. . . . . . . 8
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 23 | 15, 9, 21, 22 | opnoncon 34495 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾)) |
| 24 | 13, 20, 23 | syl2anc 693 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾)) |
| 25 | 24 | fveq2d 6195 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ((pmap‘𝐾)‘(0.‘𝐾))) |
| 26 | | simpl 473 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ HL) |
| 27 | 15, 9 | opoccl 34481 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 28 | 13, 20, 27 | syl2anc 693 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 29 | 15, 21, 1, 7 | pmapmeet 35059 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))) |
| 30 | 26, 20, 28, 29 | syl3anc 1326 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))) |
| 31 | | hlatl 34647 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ AtLat) |
| 33 | 22, 7 | pmap0 35051 |
. . . . . 6
⊢ (𝐾 ∈ AtLat →
((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
| 34 | 32, 33 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
| 35 | 25, 30, 34 | 3eqtr3d 2664 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ∅) |
| 36 | 11, 35 | eqtrd 2656 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((𝑃‘(𝑃‘𝑋)) ∩ (𝑃‘𝑋)) = ∅) |
| 37 | 5, 36 | sseqtrd 3641 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) ⊆ ∅) |
| 38 | | ss0b 3973 |
. 2
⊢ ((𝑋 ∩ (𝑃‘𝑋)) ⊆ ∅ ↔ (𝑋 ∩ (𝑃‘𝑋)) = ∅) |
| 39 | 37, 38 | sylib 208 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) = ∅) |