Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh1N Structured version   Visualization version   GIF version

Theorem omlfh1N 34545
Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 28477 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh1N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh1N
StepHypRef Expression
1 omllat 34529 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
2 omlfh1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 eqid 2622 . . . . . 6 (le‘𝐾) = (le‘𝐾)
4 omlfh1.j . . . . . 6 = (join‘𝐾)
5 omlfh1.m . . . . . 6 = (meet‘𝐾)
62, 3, 4, 5latledi 17089 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
71, 6sylan 488 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
873adant3 1081 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
91adantr 481 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
10 simpr1 1067 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
11 simpr2 1068 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
12 simpr3 1069 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
132, 4latjcl 17051 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
149, 11, 12, 13syl3anc 1326 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
152, 5latmcom 17075 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
169, 10, 14, 15syl3anc 1326 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
17 omlol 34527 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
1817adantr 481 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
192, 5latmcl 17052 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
209, 10, 11, 19syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
212, 5latmcl 17052 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
229, 10, 12, 21syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
23 eqid 2622 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
242, 4, 5, 23oldmj1 34508 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
2518, 20, 22, 24syl3anc 1326 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
262, 4, 5, 23oldmm1 34504 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2718, 10, 11, 26syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
282, 4, 5, 23oldmm1 34504 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
2918, 10, 12, 28syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
3027, 29oveq12d 6668 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3125, 30eqtrd 2656 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3216, 31oveq12d 6668 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
33323adant3 1081 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
34 omlop 34528 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
3534adantr 481 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
362, 23opoccl 34481 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
3735, 10, 36syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
382, 23opoccl 34481 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
3935, 11, 38syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
402, 4latjcl 17051 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
419, 37, 39, 40syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
422, 23opoccl 34481 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
4335, 12, 42syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
442, 4latjcl 17051 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
459, 37, 43, 44syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
462, 5latmcl 17052 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
479, 41, 45, 46syl3anc 1326 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
482, 5latmassOLD 34516 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
4918, 14, 10, 47, 48syl13anc 1328 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
50493adant3 1081 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
51 omlfh1.c . . . . . . . . . . . . . 14 𝐶 = (cm‘𝐾)
522, 23, 51cmt2N 34537 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
53523adant3r3 1276 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
54 simpl 473 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
552, 4, 5, 23, 51cmtbr3N 34541 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5654, 10, 39, 55syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5753, 56bitrd 268 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5857biimpa 501 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
5958adantrr 753 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
60593impa 1259 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
612, 23, 51cmt2N 34537 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
62613adant3r2 1275 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
632, 4, 5, 23, 51cmtbr3N 34541 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6454, 10, 43, 63syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6562, 64bitrd 268 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6665biimpa 501 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6766adantrl 752 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
68673impa 1259 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6960, 68oveq12d 6668 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
702, 5latmmdiN 34521 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
7118, 10, 41, 45, 70syl13anc 1328 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
72713adant3 1081 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
732, 5latmmdiN 34521 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7418, 10, 39, 43, 73syl13anc 1328 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
75743adant3 1081 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7669, 72, 753eqtr4d 2666 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
7776oveq2d 6666 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))) = ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
782, 5latmcl 17052 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
799, 39, 43, 78syl3anc 1326 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
802, 5latm12 34517 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8118, 14, 10, 79, 80syl13anc 1328 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
82813adant3 1081 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8350, 77, 823eqtrd 2660 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
842, 4, 5, 23oldmj1 34508 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8518, 11, 12, 84syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8685oveq2d 6666 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
87 eqid 2622 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
882, 23, 5, 87opnoncon 34495 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
8935, 14, 88syl2anc 693 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
9086, 89eqtr3d 2658 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (0.‘𝐾))
9190oveq2d 6666 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (0.‘𝐾)))
922, 5, 87olm01 34523 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9318, 10, 92syl2anc 693 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9491, 93eqtrd 2656 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
95943adant3 1081 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
9633, 83, 953eqtrd 2660 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾))
972, 4latjcl 17051 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
989, 20, 22, 97syl3anc 1326 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
992, 5latmcl 17052 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1009, 10, 14, 99syl3anc 1326 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1012, 3, 5, 23, 87omllaw3 34532 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
10254, 98, 100, 101syl3anc 1326 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1031023adant3 1081 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1048, 96, 103mp2and 715 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍)))
105104eqcomd 2628 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  joincjn 16944  meetcmee 16945  0.cp0 17037  Latclat 17045  OPcops 34459  cmccmtN 34460  OLcol 34461  OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-oposet 34463  df-cmtN 34464  df-ol 34465  df-oml 34466
This theorem is referenced by:  omlfh3N  34546  omlmod1i2N  34547
  Copyright terms: Public domain W3C validator