MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordnbtwnOLD Structured version   Visualization version   GIF version

Theorem ordnbtwnOLD 5817
Description: Obsolete proof of ordnbtwn 5816 as of 24-Sep-2021. (Contributed by NM, 21-Jun-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ordnbtwnOLD (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem ordnbtwnOLD
StepHypRef Expression
1 ordn2lp 5743 . . 3 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
2 ordirr 5741 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
3 ioran 511 . . 3 (¬ ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴) ↔ (¬ (𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴𝐴))
41, 2, 3sylanbrc 698 . 2 (Ord 𝐴 → ¬ ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴))
5 elsuci 5791 . . . . 5 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
65anim2i 593 . . . 4 ((𝐴𝐵𝐵 ∈ suc 𝐴) → (𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)))
7 andi 911 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)) ↔ ((𝐴𝐵𝐵𝐴) ∨ (𝐴𝐵𝐵 = 𝐴)))
86, 7sylib 208 . . 3 ((𝐴𝐵𝐵 ∈ suc 𝐴) → ((𝐴𝐵𝐵𝐴) ∨ (𝐴𝐵𝐵 = 𝐴)))
9 eleq2 2690 . . . . 5 (𝐵 = 𝐴 → (𝐴𝐵𝐴𝐴))
109biimpac 503 . . . 4 ((𝐴𝐵𝐵 = 𝐴) → 𝐴𝐴)
1110orim2i 540 . . 3 (((𝐴𝐵𝐵𝐴) ∨ (𝐴𝐵𝐵 = 𝐴)) → ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴))
128, 11syl 17 . 2 ((𝐴𝐵𝐵 ∈ suc 𝐴) → ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴))
134, 12nsyl 135 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  Ord word 5722  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-fr 5073  df-we 5075  df-ord 5726  df-suc 5729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator