MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuci Structured version   Visualization version   GIF version

Theorem elsuci 5791
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 5729 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2693 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3753 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 264 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 4194 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 540 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 207 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383   = wceq 1483  wcel 1990  cun 3572  {csn 4177  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-suc 5729
This theorem is referenced by:  suctr  5808  trsucss  5811  ordnbtwn  5816  ordnbtwnOLD  5817  suc11  5831  tfrlem11  7484  omordi  7646  nnmordi  7711  phplem3  8141  pssnn  8178  r1sdom  8637  cfsuc  9079  axdc3lem2  9273  axdc3lem4  9275  indpi  9729  bnj563  30813  bnj964  31013  ontgval  32430  onsucconni  32436  suctrALT  39061  suctrALT2VD  39071  suctrALT2  39072  suctrALTcf  39158  suctrALTcfVD  39159  suctrALT3  39160
  Copyright terms: Public domain W3C validator