MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunpr Structured version   Visualization version   GIF version

Theorem ordunpr 7026
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunpr ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})

Proof of Theorem ordunpr
StepHypRef Expression
1 eloni 5733 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 eloni 5733 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
3 ordtri2or2 5823 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
41, 2, 3syl2an 494 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶𝐶𝐵))
54orcomd 403 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵𝐵𝐶))
6 ssequn2 3786 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
7 ssequn1 3783 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
86, 7orbi12i 543 . . 3 ((𝐶𝐵𝐵𝐶) ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
95, 8sylib 208 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
10 unexg 6959 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ V)
11 elprg 4196 . . 3 ((𝐵𝐶) ∈ V → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
1210, 11syl 17 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
139, 12mpbird 247 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  {cpr 4179  Ord word 5722  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  ordunel  7027  r0weon  8835
  Copyright terms: Public domain W3C validator