MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqimp Structured version   Visualization version   GIF version

Theorem oteqimp 7187
Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
Assertion
Ref Expression
oteqimp (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶)))

Proof of Theorem oteqimp
StepHypRef Expression
1 ot1stg 7182 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
2 ot2ndg 7183 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
3 ot3rdg 7184 . . . 4 (𝐶𝑍 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
433ad2ant3 1084 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
51, 2, 43jca 1242 . 2 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴 ∧ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵 ∧ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶))
6 fveq2 6191 . . . . 5 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (1st𝑇) = (1st ‘⟨𝐴, 𝐵, 𝐶⟩))
76fveq2d 6195 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (1st ‘(1st𝑇)) = (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)))
87eqeq1d 2624 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((1st ‘(1st𝑇)) = 𝐴 ↔ (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴))
96fveq2d 6195 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (2nd ‘(1st𝑇)) = (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)))
109eqeq1d 2624 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((2nd ‘(1st𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵))
11 fveq2 6191 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (2nd𝑇) = (2nd ‘⟨𝐴, 𝐵, 𝐶⟩))
1211eqeq1d 2624 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((2nd𝑇) = 𝐶 ↔ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶))
138, 10, 123anbi123d 1399 . 2 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶) ↔ ((1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴 ∧ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵 ∧ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)))
145, 13syl5ibr 236 1 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  cotp 4185  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator