![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllmhm | Structured version Visualization version GIF version |
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
phllmhm.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) |
Ref | Expression |
---|---|
phllmhm | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | phllmhm.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
4 | eqid 2622 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2622 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | eqid 2622 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 19973 | . . . 4 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)))) |
8 | 7 | simp3bi 1078 | . . 3 ⊢ (𝑊 ∈ PreHil → ∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦))) |
9 | simp1 1061 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) | |
10 | 9 | ralimi 2952 | . . 3 ⊢ (∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝑊 ∈ PreHil → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
12 | oveq2 6658 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 , 𝑦) = (𝑥 , 𝐴)) | |
13 | 12 | mpteq2dv 4745 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))) |
14 | phllmhm.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) | |
15 | 13, 14 | syl6eqr 2674 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = 𝐺) |
16 | 15 | eleq1d 2686 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ↔ 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))) |
17 | 16 | rspccva 3308 | . 2 ⊢ ((∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
18 | 11, 17 | sylan 488 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 *𝑟cstv 15943 Scalarcsca 15944 ·𝑖cip 15946 0gc0g 16100 *-Ringcsr 18844 LMHom clmhm 19019 LVecclvec 19102 ringLModcrglmod 19169 PreHilcphl 19969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-iota 5851 df-fv 5896 df-ov 6653 df-phl 19971 |
This theorem is referenced by: ipcl 19978 ip0l 19981 ipdir 19984 ipass 19990 |
Copyright terms: Public domain | W3C validator |