MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipass Structured version   Visualization version   GIF version

Theorem ipass 19990
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
Assertion
Ref Expression
ipass ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶)))

Proof of Theorem ipass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . 5 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . 5 , = (·𝑖𝑊)
3 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2622 . . . . 5 (𝑥𝑉 ↦ (𝑥 , 𝐶)) = (𝑥𝑉 ↦ (𝑥 , 𝐶))
51, 2, 3, 4phllmhm 19977 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐶𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
653ad2antr3 1228 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
7 simpr1 1067 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴𝐾)
8 simpr2 1068 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
9 ipdir.f . . . 4 𝐾 = (Base‘𝐹)
10 ipass.s . . . 4 · = ( ·𝑠𝑊)
11 ipass.p . . . . 5 × = (.r𝐹)
12 rlmvsca 19202 . . . . 5 (.r𝐹) = ( ·𝑠 ‘(ringLMod‘𝐹))
1311, 12eqtri 2644 . . . 4 × = ( ·𝑠 ‘(ringLMod‘𝐹))
141, 9, 3, 10, 13lmhmlin 19035 . . 3 (((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴𝐾𝐵𝑉) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
156, 7, 8, 14syl3anc 1326 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
16 phllmod 19975 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1716adantr 481 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
183, 1, 10, 9lmodvscl 18880 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
1917, 7, 8, 18syl3anc 1326 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐴 · 𝐵) ∈ 𝑉)
20 oveq1 6657 . . . 4 (𝑥 = (𝐴 · 𝐵) → (𝑥 , 𝐶) = ((𝐴 · 𝐵) , 𝐶))
21 ovex 6678 . . . 4 (𝑥 , 𝐶) ∈ V
2220, 4, 21fvmpt3i 6287 . . 3 ((𝐴 · 𝐵) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶))
2319, 22syl 17 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶))
24 oveq1 6657 . . . . 5 (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶))
2524, 4, 21fvmpt3i 6287 . . . 4 (𝐵𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
268, 25syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
2726oveq2d 6666 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = (𝐴 × (𝐵 , 𝐶)))
2815, 23, 273eqtr3d 2664 1 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cmpt 4729  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  LModclmod 18863   LMHom clmhm 19019  ringLModcrglmod 19169  PreHilcphl 19969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-sets 15864  df-vsca 15958  df-ip 15959  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971
This theorem is referenced by:  ipassr  19991  ocvlss  20016  cphass  23011  ipcau2  23033  tchcphlem2  23035
  Copyright terms: Public domain W3C validator