MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalvw Structured version   Visualization version   GIF version

Theorem equsalvw 1931
Description: Version of equsalv 2108 with a dv condition, and of equsal 2291 with two dv conditions, which requires fewer axioms. See also the dual form equsexvw 1932. (Contributed by BJ, 31-May-2019.)
Hypothesis
Ref Expression
equsalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsalvw (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem equsalvw
StepHypRef Expression
1 19.23v 1902 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ (∃𝑥 𝑥 = 𝑦𝜓))
2 equsalvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32pm5.74i 260 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
43albii 1747 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
5 ax6ev 1890 . . 3 𝑥 𝑥 = 𝑦
65a1bi 352 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝑦𝜓))
71, 4, 63bitr4i 292 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  ax13lem2  2296  reu8  3402  asymref2  5513  intirr  5514  fun11  5963  bj-dvelimdv  32834  bj-dvelimdv1  32835  wl-clelv2-just  33379  undmrnresiss  37910  pm13.192  38611
  Copyright terms: Public domain W3C validator