| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | vtoclg.2 | . 2 ⊢ 𝜑 | |
| 4 | 1, 2, 3 | vtoclg1f 3265 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Copyright terms: Public domain | W3C validator |