MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo Structured version   Visualization version   GIF version

Theorem isclo 20891
Description: A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 such that all the points in 𝑦 are in 𝐴 iff 𝑥 is. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isclo.1 𝑋 = 𝐽
Assertion
Ref Expression
isclo ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isclo
StepHypRef Expression
1 elin 3796 . 2 (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
2 isclo.1 . . . . 5 𝑋 = 𝐽
32iscld2 20832 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝑋𝐴) ∈ 𝐽))
43anbi2d 740 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ (𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽)))
5 eltop2 20779 . . . . . 6 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
6 dfss3 3592 . . . . . . . . . 10 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
7 pm5.501 356 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
87ralbidv 2986 . . . . . . . . . 10 (𝑥𝐴 → (∀𝑧𝑦 𝑧𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
96, 8syl5bb 272 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
109anbi2d 740 . . . . . . . 8 (𝑥𝐴 → ((𝑥𝑦𝑦𝐴) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1110rexbidv 3052 . . . . . . 7 (𝑥𝐴 → (∃𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1211ralbiia 2979 . . . . . 6 (∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
135, 12syl6bb 276 . . . . 5 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
14 eltop2 20779 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴))))
15 dfss3 3592 . . . . . . . . . 10 (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 𝑧 ∈ (𝑋𝐴))
16 id 22 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧𝑦)
17 simpr 477 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → 𝑦𝐽)
18 elunii 4441 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝐽) → 𝑧 𝐽)
1916, 17, 18syl2anr 495 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧 𝐽)
2019, 2syl6eleqr 2712 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧𝑋)
21 eldif 3584 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋𝐴) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝐴))
2221baib 944 . . . . . . . . . . . . 13 (𝑧𝑋 → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
2320, 22syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
24 eldifn 3733 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) → ¬ 𝑥𝐴)
25 nbn2 360 . . . . . . . . . . . . . 14 𝑥𝐴 → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2624, 25syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝐴) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2726ad2antrr 762 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2823, 27bitrd 268 . . . . . . . . . . 11 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ (𝑥𝐴𝑧𝐴)))
2928ralbidva 2985 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (∀𝑧𝑦 𝑧 ∈ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3015, 29syl5bb 272 . . . . . . . . 9 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3130anbi2d 740 . . . . . . . 8 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → ((𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3231rexbidva 3049 . . . . . . 7 (𝑥 ∈ (𝑋𝐴) → (∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3332ralbiia 2979 . . . . . 6 (∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3414, 33syl6bb 276 . . . . 5 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3513, 34anbi12d 747 . . . 4 (𝐽 ∈ Top → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
3635adantr 481 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
37 ralunb 3794 . . . 4 (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
38 simpr 477 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
39 undif 4049 . . . . . 6 (𝐴𝑋 ↔ (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4038, 39sylib 208 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4140raleqdv 3144 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
4237, 41syl5bbr 274 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
434, 36, 423bitrd 294 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
441, 43syl5bb 272 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cdif 3571  cun 3572  cin 3573  wss 3574   cuni 4436  cfv 5888  Topctop 20698  Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-top 20699  df-cld 20823
This theorem is referenced by:  isclo2  20892  cvmliftmolem2  31264  cvmlift2lem12  31296
  Copyright terms: Public domain W3C validator