MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posi Structured version   Visualization version   GIF version

Theorem posi 16950
Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posi ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))

Proof of Theorem posi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posi.b . . . 4 𝐵 = (Base‘𝐾)
2 posi.l . . . 4 = (le‘𝐾)
31, 2ispos 16947 . . 3 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
43simprbi 480 . 2 (𝐾 ∈ Poset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
5 breq1 4656 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑥))
6 breq2 4657 . . . . 5 (𝑥 = 𝑋 → (𝑋 𝑥𝑋 𝑋))
75, 6bitrd 268 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑋))
8 breq1 4656 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 4657 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9anbi12d 747 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 eqeq1 2626 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
1210, 11imbi12d 334 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦)))
138anbi1d 741 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑧) ↔ (𝑋 𝑦𝑦 𝑧)))
14 breq1 4656 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
1513, 14imbi12d 334 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)))
167, 12, 153anbi123d 1399 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧))))
17 breq2 4657 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 breq1 4656 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1917, 18anbi12d 747 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
20 eqeq2 2633 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2119, 20imbi12d 334 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌)))
22 breq1 4656 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
2317, 22anbi12d 747 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑧) ↔ (𝑋 𝑌𝑌 𝑧)))
2423imbi1d 331 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)))
2521, 243anbi23d 1402 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧))))
26 breq2 4657 . . . . . 6 (𝑧 = 𝑍 → (𝑌 𝑧𝑌 𝑍))
2726anbi2d 740 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌𝑌 𝑧) ↔ (𝑋 𝑌𝑌 𝑍)))
28 breq2 4657 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧𝑋 𝑍))
2927, 28imbi12d 334 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
30293anbi3d 1405 . . 3 (𝑧 = 𝑍 → ((𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
3116, 25, 30rspc3v 3325 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
324, 31mpan9 486 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-poset 16946
This theorem is referenced by:  posasymb  16952  postr  16953
  Copyright terms: Public domain W3C validator