MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispos Structured version   Visualization version   GIF version

Theorem ispos 16947
Description: The predicate "is a poset." (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypotheses
Ref Expression
ispos.b 𝐵 = (Base‘𝐾)
ispos.l = (le‘𝐾)
Assertion
Ref Expression
ispos (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐾(𝑥,𝑦,𝑧)

Proof of Theorem ispos
Dummy variables 𝑝 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
2 ispos.b . . . . . . 7 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2674 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
43eqeq2d 2632 . . . . 5 (𝑝 = 𝐾 → (𝑏 = (Base‘𝑝) ↔ 𝑏 = 𝐵))
5 fveq2 6191 . . . . . . 7 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
6 ispos.l . . . . . . 7 = (le‘𝐾)
75, 6syl6eqr 2674 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = )
87eqeq2d 2632 . . . . 5 (𝑝 = 𝐾 → (𝑟 = (le‘𝑝) ↔ 𝑟 = ))
94, 83anbi12d 1400 . . . 4 (𝑝 = 𝐾 → ((𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ (𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))))
1092exbidv 1852 . . 3 (𝑝 = 𝐾 → (∃𝑏𝑟(𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ ∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))))
11 df-poset 16946 . . 3 Poset = {𝑝 ∣ ∃𝑏𝑟(𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))}
1210, 11elab4g 3355 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))))
13 fvex 6201 . . . . 5 (Base‘𝐾) ∈ V
142, 13eqeltri 2697 . . . 4 𝐵 ∈ V
15 fvex 6201 . . . . 5 (le‘𝐾) ∈ V
166, 15eqeltri 2697 . . . 4 ∈ V
17 raleq 3138 . . . . . 6 (𝑏 = 𝐵 → (∀𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
1817raleqbi1dv 3146 . . . . 5 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
1918raleqbi1dv 3146 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
20 breq 4655 . . . . . . 7 (𝑟 = → (𝑥𝑟𝑥𝑥 𝑥))
21 breq 4655 . . . . . . . . 9 (𝑟 = → (𝑥𝑟𝑦𝑥 𝑦))
22 breq 4655 . . . . . . . . 9 (𝑟 = → (𝑦𝑟𝑥𝑦 𝑥))
2321, 22anbi12d 747 . . . . . . . 8 (𝑟 = → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥 𝑦𝑦 𝑥)))
2423imbi1d 331 . . . . . . 7 (𝑟 = → (((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ↔ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦)))
25 breq 4655 . . . . . . . . 9 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
2621, 25anbi12d 747 . . . . . . . 8 (𝑟 = → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥 𝑦𝑦 𝑧)))
27 breq 4655 . . . . . . . 8 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
2826, 27imbi12d 334 . . . . . . 7 (𝑟 = → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
2920, 24, 283anbi123d 1399 . . . . . 6 (𝑟 = → ((𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
3029ralbidv 2986 . . . . 5 (𝑟 = → (∀𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
31302ralbidv 2989 . . . 4 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
3214, 16, 19, 31ceqsex2v 3245 . . 3 (∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
3332anbi2i 730 . 2 ((𝐾 ∈ V ∧ ∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
3412, 33bitri 264 1 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-poset 16946
This theorem is referenced by:  ispos2  16948  posi  16950  0pos  16954  isposd  16955  isposi  16956  pospropd  17134  resspos  29659
  Copyright terms: Public domain W3C validator