| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) |
| 2 | | ispos.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
| 4 | 3 | eqeq2d 2632 |
. . . . 5
⊢ (𝑝 = 𝐾 → (𝑏 = (Base‘𝑝) ↔ 𝑏 = 𝐵)) |
| 5 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) |
| 6 | | ispos.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
| 8 | 7 | eqeq2d 2632 |
. . . . 5
⊢ (𝑝 = 𝐾 → (𝑟 = (le‘𝑝) ↔ 𝑟 = ≤ )) |
| 9 | 4, 8 | 3anbi12d 1400 |
. . . 4
⊢ (𝑝 = 𝐾 → ((𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ (𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))))) |
| 10 | 9 | 2exbidv 1852 |
. . 3
⊢ (𝑝 = 𝐾 → (∃𝑏∃𝑟(𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ ∃𝑏∃𝑟(𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))))) |
| 11 | | df-poset 16946 |
. . 3
⊢ Poset =
{𝑝 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |
| 12 | 10, 11 | elab4g 3355 |
. 2
⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∃𝑏∃𝑟(𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))))) |
| 13 | | fvex 6201 |
. . . . 5
⊢
(Base‘𝐾)
∈ V |
| 14 | 2, 13 | eqeltri 2697 |
. . . 4
⊢ 𝐵 ∈ V |
| 15 | | fvex 6201 |
. . . . 5
⊢
(le‘𝐾) ∈
V |
| 16 | 6, 15 | eqeltri 2697 |
. . . 4
⊢ ≤ ∈
V |
| 17 | | raleq 3138 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 18 | 17 | raleqbi1dv 3146 |
. . . . 5
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 19 | 18 | raleqbi1dv 3146 |
. . . 4
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 20 | | breq 4655 |
. . . . . . 7
⊢ (𝑟 = ≤ → (𝑥𝑟𝑥 ↔ 𝑥 ≤ 𝑥)) |
| 21 | | breq 4655 |
. . . . . . . . 9
⊢ (𝑟 = ≤ → (𝑥𝑟𝑦 ↔ 𝑥 ≤ 𝑦)) |
| 22 | | breq 4655 |
. . . . . . . . 9
⊢ (𝑟 = ≤ → (𝑦𝑟𝑥 ↔ 𝑦 ≤ 𝑥)) |
| 23 | 21, 22 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
| 24 | 23 | imbi1d 331 |
. . . . . . 7
⊢ (𝑟 = ≤ → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ↔ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦))) |
| 25 | | breq 4655 |
. . . . . . . . 9
⊢ (𝑟 = ≤ → (𝑦𝑟𝑧 ↔ 𝑦 ≤ 𝑧)) |
| 26 | 21, 25 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧))) |
| 27 | | breq 4655 |
. . . . . . . 8
⊢ (𝑟 = ≤ → (𝑥𝑟𝑧 ↔ 𝑥 ≤ 𝑧)) |
| 28 | 26, 27 | imbi12d 334 |
. . . . . . 7
⊢ (𝑟 = ≤ → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 29 | 20, 24, 28 | 3anbi123d 1399 |
. . . . . 6
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 30 | 29 | ralbidv 2986 |
. . . . 5
⊢ (𝑟 = ≤ → (∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 31 | 30 | 2ralbidv 2989 |
. . . 4
⊢ (𝑟 = ≤ → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 32 | 14, 16, 19, 31 | ceqsex2v 3245 |
. . 3
⊢
(∃𝑏∃𝑟(𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 33 | 32 | anbi2i 730 |
. 2
⊢ ((𝐾 ∈ V ∧ ∃𝑏∃𝑟(𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 34 | 12, 33 | bitri 264 |
1
⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |