| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posi | Structured version Visualization version Unicode version | ||
| Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| posi.b |
|
| posi.l |
|
| Ref | Expression |
|---|---|
| posi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posi.b |
. . . 4
| |
| 2 | posi.l |
. . . 4
| |
| 3 | 1, 2 | ispos 16947 |
. . 3
|
| 4 | 3 | simprbi 480 |
. 2
|
| 5 | breq1 4656 |
. . . . 5
| |
| 6 | breq2 4657 |
. . . . 5
| |
| 7 | 5, 6 | bitrd 268 |
. . . 4
|
| 8 | breq1 4656 |
. . . . . 6
| |
| 9 | breq2 4657 |
. . . . . 6
| |
| 10 | 8, 9 | anbi12d 747 |
. . . . 5
|
| 11 | eqeq1 2626 |
. . . . 5
| |
| 12 | 10, 11 | imbi12d 334 |
. . . 4
|
| 13 | 8 | anbi1d 741 |
. . . . 5
|
| 14 | breq1 4656 |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 334 |
. . . 4
|
| 16 | 7, 12, 15 | 3anbi123d 1399 |
. . 3
|
| 17 | breq2 4657 |
. . . . . 6
| |
| 18 | breq1 4656 |
. . . . . 6
| |
| 19 | 17, 18 | anbi12d 747 |
. . . . 5
|
| 20 | eqeq2 2633 |
. . . . 5
| |
| 21 | 19, 20 | imbi12d 334 |
. . . 4
|
| 22 | breq1 4656 |
. . . . . 6
| |
| 23 | 17, 22 | anbi12d 747 |
. . . . 5
|
| 24 | 23 | imbi1d 331 |
. . . 4
|
| 25 | 21, 24 | 3anbi23d 1402 |
. . 3
|
| 26 | breq2 4657 |
. . . . . 6
| |
| 27 | 26 | anbi2d 740 |
. . . . 5
|
| 28 | breq2 4657 |
. . . . 5
| |
| 29 | 27, 28 | imbi12d 334 |
. . . 4
|
| 30 | 29 | 3anbi3d 1405 |
. . 3
|
| 31 | 16, 25, 30 | rspc3v 3325 |
. 2
|
| 32 | 4, 31 | mpan9 486 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-poset 16946 |
| This theorem is referenced by: posasymb 16952 postr 16953 |
| Copyright terms: Public domain | W3C validator |