Proof of Theorem prproe
| Step | Hyp | Ref
| Expression |
| 1 | | elpri 4197 |
. . 3
⊢ (𝐶 ∈ {𝐴, 𝐵} → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) |
| 2 | | simprrr 805 |
. . . . . . 7
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ 𝑉) |
| 3 | | necom 2847 |
. . . . . . . . . 10
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| 4 | | neeq2 2857 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) |
| 5 | 4 | eqcoms 2630 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐴 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) |
| 6 | 5 | biimpcd 239 |
. . . . . . . . . 10
⊢ (𝐵 ≠ 𝐴 → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
| 7 | 3, 6 | sylbi 207 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
| 8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
| 9 | 8 | impcom 446 |
. . . . . . 7
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ≠ 𝐶) |
| 10 | | eldifsn 4317 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑉 ∖ {𝐶}) ↔ (𝐵 ∈ 𝑉 ∧ 𝐵 ≠ 𝐶)) |
| 11 | 2, 9, 10 | sylanbrc 698 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ (𝑉 ∖ {𝐶})) |
| 12 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐴, 𝐵})) |
| 13 | 12 | adantl 482 |
. . . . . 6
⊢ (((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) ∧ 𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐴, 𝐵})) |
| 14 | | prid2g 4296 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| 15 | 14 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝐴, 𝐵}) |
| 16 | 15 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ {𝐴, 𝐵}) |
| 17 | 16 | adantl 482 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ {𝐴, 𝐵}) |
| 18 | 11, 13, 17 | rspcedvd 3317 |
. . . . 5
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |
| 19 | 18 | ex 450 |
. . . 4
⊢ (𝐶 = 𝐴 → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 20 | | simprrl 804 |
. . . . . . 7
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ 𝑉) |
| 21 | | neeq2 2857 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐶 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 22 | 21 | eqcoms 2630 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐵 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 23 | 22 | biimpcd 239 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 → (𝐶 = 𝐵 → 𝐴 ≠ 𝐶)) |
| 24 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐶 = 𝐵 → 𝐴 ≠ 𝐶)) |
| 25 | 24 | impcom 446 |
. . . . . . 7
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ≠ 𝐶) |
| 26 | | eldifsn 4317 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑉 ∖ {𝐶}) ↔ (𝐴 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶)) |
| 27 | 20, 25, 26 | sylanbrc 698 |
. . . . . 6
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ (𝑉 ∖ {𝐶})) |
| 28 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑣 = 𝐴 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐴, 𝐵})) |
| 29 | 28 | adantl 482 |
. . . . . 6
⊢ (((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) ∧ 𝑣 = 𝐴) → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐴, 𝐵})) |
| 30 | | prid1g 4295 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ {𝐴, 𝐵}) |
| 32 | 31 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ {𝐴, 𝐵}) |
| 33 | 32 | adantl 482 |
. . . . . 6
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ {𝐴, 𝐵}) |
| 34 | 27, 29, 33 | rspcedvd 3317 |
. . . . 5
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |
| 35 | 34 | ex 450 |
. . . 4
⊢ (𝐶 = 𝐵 → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 36 | 19, 35 | jaoi 394 |
. . 3
⊢ ((𝐶 = 𝐴 ∨ 𝐶 = 𝐵) → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 37 | 1, 36 | syl 17 |
. 2
⊢ (𝐶 ∈ {𝐴, 𝐵} → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 38 | 37 | 3impib 1262 |
1
⊢ ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |