MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edglnl Structured version   Visualization version   GIF version

Theorem edglnl 26038
Description: The edges incident with a vertex 𝑁 are the edges joining 𝑁 with other vertices and the loops on 𝑁 in a pseudograph. (Contributed by AV, 18-Dec-2021.)
Hypotheses
Ref Expression
edglnl.v 𝑉 = (Vtx‘𝐺)
edglnl.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
edglnl ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
Distinct variable groups:   𝑣,𝐸   𝑖,𝐺   𝑖,𝑁,𝑣   𝑖,𝑉,𝑣
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑣)

Proof of Theorem edglnl
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrab 4567 . . . 4 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}
21a1i 11 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
32uneq1d 3766 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))
4 unrab 3898 . . 3 ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})}
5 simpl 473 . . . . . . . 8 ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖))
65rexlimivw 3029 . . . . . . 7 (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖))
76a1i 11 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖)))
8 snidg 4206 . . . . . . . 8 (𝑁𝑉𝑁 ∈ {𝑁})
98ad2antlr 763 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → 𝑁 ∈ {𝑁})
10 eleq2 2690 . . . . . . 7 ((𝐸𝑖) = {𝑁} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑁}))
119, 10syl5ibrcom 237 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) = {𝑁} → 𝑁 ∈ (𝐸𝑖)))
127, 11jaod 395 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) → 𝑁 ∈ (𝐸𝑖)))
13 upgruhgr 25997 . . . . . . . . 9 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )
14 edglnl.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
1514uhgrfun 25961 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun 𝐸)
1613, 15syl 17 . . . . . . . 8 (𝐺 ∈ UPGraph → Fun 𝐸)
1716adantr 481 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → Fun 𝐸)
1814iedgedg 25943 . . . . . . 7 ((Fun 𝐸𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
1917, 18sylan 488 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
20 edglnl.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
21 eqid 2622 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
2220, 21upgredg 26032 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ (𝐸𝑖) ∈ (Edg‘𝐺)) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚})
2322ex 450 . . . . . . . 8 (𝐺 ∈ UPGraph → ((𝐸𝑖) ∈ (Edg‘𝐺) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚}))
2423ad2antrr 762 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) ∈ (Edg‘𝐺) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚}))
25 dfsn2 4190 . . . . . . . . . . . . . . . . . . . . . 22 {𝑛} = {𝑛, 𝑛}
2625eqcomi 2631 . . . . . . . . . . . . . . . . . . . . 21 {𝑛, 𝑛} = {𝑛}
27 elsni 4194 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ {𝑛} → 𝑁 = 𝑛)
28 sneq 4187 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 𝑛 → {𝑁} = {𝑛})
2928eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 𝑛 → {𝑛} = {𝑁})
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ {𝑛} → {𝑛} = {𝑁})
3126, 30syl5eq 2668 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ {𝑛} → {𝑛, 𝑛} = {𝑁})
3231, 26eleq2s 2719 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁})
33 preq2 4269 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → {𝑛, 𝑚} = {𝑛, 𝑛})
3433eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} ↔ 𝑁 ∈ {𝑛, 𝑛}))
3533eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ({𝑛, 𝑚} = {𝑁} ↔ {𝑛, 𝑛} = {𝑁}))
3634, 35imbi12d 334 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}) ↔ (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁})))
3732, 36mpbiri 248 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}))
3837imp 445 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝑛𝑁 ∈ {𝑛, 𝑚}) → {𝑛, 𝑚} = {𝑁})
3938olcd 408 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑛𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
4039expcom 451 . . . . . . . . . . . . . . 15 (𝑁 ∈ {𝑛, 𝑚} → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
41403ad2ant3 1084 . . . . . . . . . . . . . 14 ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
4241com12 32 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
43 simpr3 1069 . . . . . . . . . . . . . . . 16 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑁 ∈ {𝑛, 𝑚})
44 simpl 473 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑚𝑛)
4544necomd 2849 . . . . . . . . . . . . . . . . 17 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑛𝑚)
46 simpr2 1068 . . . . . . . . . . . . . . . . 17 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (𝑛𝑉𝑚𝑉))
47 prproe 4434 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ {𝑛, 𝑚} ∧ 𝑛𝑚 ∧ (𝑛𝑉𝑚𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})
4843, 45, 46, 47syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})
49 r19.42v 3092 . . . . . . . . . . . . . . . 16 (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚}))
5043, 48, 49sylanbrc 698 . . . . . . . . . . . . . . 15 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}))
5150orcd 407 . . . . . . . . . . . . . 14 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
5251ex 450 . . . . . . . . . . . . 13 (𝑚𝑛 → ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
5342, 52pm2.61ine 2877 . . . . . . . . . . . 12 ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
54533exp 1264 . . . . . . . . . . 11 (𝑁𝑉 → ((𝑛𝑉𝑚𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
5554ad2antlr 763 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝑛𝑉𝑚𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
5655imp 445 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛𝑉𝑚𝑉)) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
57 eleq2 2690 . . . . . . . . . 10 ((𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑛, 𝑚}))
58 eleq2 2690 . . . . . . . . . . . . 13 ((𝐸𝑖) = {𝑛, 𝑚} → (𝑣 ∈ (𝐸𝑖) ↔ 𝑣 ∈ {𝑛, 𝑚}))
5957, 58anbi12d 747 . . . . . . . . . . . 12 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})))
6059rexbidv 3052 . . . . . . . . . . 11 ((𝐸𝑖) = {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})))
61 eqeq1 2626 . . . . . . . . . . 11 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝐸𝑖) = {𝑁} ↔ {𝑛, 𝑚} = {𝑁}))
6260, 61orbi12d 746 . . . . . . . . . 10 ((𝐸𝑖) = {𝑛, 𝑚} → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) ↔ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
6357, 62imbi12d 334 . . . . . . . . 9 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})) ↔ (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
6456, 63syl5ibrcom 237 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛𝑉𝑚𝑉)) → ((𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6564rexlimdvva 3038 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6624, 65syld 47 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) ∈ (Edg‘𝐺) → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6719, 66mpd 15 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})))
6812, 67impbid 202 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) ↔ 𝑁 ∈ (𝐸𝑖)))
6968rabbidva 3188 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
704, 69syl5eq 2668 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
713, 70eqtrd 2656 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cdif 3571  cun 3572  {csn 4177  {cpr 4179   ciun 4520  dom cdm 5114  Fun wfun 5882  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-upgr 25977
This theorem is referenced by:  numedglnl  26039
  Copyright terms: Public domain W3C validator