MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prproe Structured version   Visualization version   Unicode version

Theorem prproe 4434
Description: For an element of a proper unordered pair of elements of a class  V, there is another (different) element of the class  V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021.)
Assertion
Ref Expression
prproe  |-  ( ( C  e.  { A ,  B }  /\  A  =/=  B  /\  ( A  e.  V  /\  B  e.  V ) )  ->  E. v  e.  ( V  \  { C }
) v  e.  { A ,  B }
)
Distinct variable groups:    v, A    v, B    v, C    v, V

Proof of Theorem prproe
StepHypRef Expression
1 elpri 4197 . . 3  |-  ( C  e.  { A ,  B }  ->  ( C  =  A  \/  C  =  B ) )
2 simprrr 805 . . . . . . 7  |-  ( ( C  =  A  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  B  e.  V )
3 necom 2847 . . . . . . . . . 10  |-  ( A  =/=  B  <->  B  =/=  A )
4 neeq2 2857 . . . . . . . . . . . 12  |-  ( A  =  C  ->  ( B  =/=  A  <->  B  =/=  C ) )
54eqcoms 2630 . . . . . . . . . . 11  |-  ( C  =  A  ->  ( B  =/=  A  <->  B  =/=  C ) )
65biimpcd 239 . . . . . . . . . 10  |-  ( B  =/=  A  ->  ( C  =  A  ->  B  =/=  C ) )
73, 6sylbi 207 . . . . . . . . 9  |-  ( A  =/=  B  ->  ( C  =  A  ->  B  =/=  C ) )
87adantr 481 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( C  =  A  ->  B  =/=  C ) )
98impcom 446 . . . . . . 7  |-  ( ( C  =  A  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  B  =/=  C )
10 eldifsn 4317 . . . . . . 7  |-  ( B  e.  ( V  \  { C } )  <->  ( B  e.  V  /\  B  =/= 
C ) )
112, 9, 10sylanbrc 698 . . . . . 6  |-  ( ( C  =  A  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  B  e.  ( V  \  { C } ) )
12 eleq1 2689 . . . . . . 7  |-  ( v  =  B  ->  (
v  e.  { A ,  B }  <->  B  e.  { A ,  B }
) )
1312adantl 482 . . . . . 6  |-  ( ( ( C  =  A  /\  ( A  =/= 
B  /\  ( A  e.  V  /\  B  e.  V ) ) )  /\  v  =  B )  ->  ( v  e.  { A ,  B } 
<->  B  e.  { A ,  B } ) )
14 prid2g 4296 . . . . . . . . 9  |-  ( B  e.  V  ->  B  e.  { A ,  B } )
1514adantl 482 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V )  ->  B  e.  { A ,  B } )
1615adantl 482 . . . . . . 7  |-  ( ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  B  e.  { A ,  B } )
1716adantl 482 . . . . . 6  |-  ( ( C  =  A  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  B  e.  { A ,  B } )
1811, 13, 17rspcedvd 3317 . . . . 5  |-  ( ( C  =  A  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  E. v  e.  ( V  \  { C }
) v  e.  { A ,  B }
)
1918ex 450 . . . 4  |-  ( C  =  A  ->  (
( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  E. v  e.  ( V  \  { C } ) v  e. 
{ A ,  B } ) )
20 simprrl 804 . . . . . . 7  |-  ( ( C  =  B  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  A  e.  V )
21 neeq2 2857 . . . . . . . . . . 11  |-  ( B  =  C  ->  ( A  =/=  B  <->  A  =/=  C ) )
2221eqcoms 2630 . . . . . . . . . 10  |-  ( C  =  B  ->  ( A  =/=  B  <->  A  =/=  C ) )
2322biimpcd 239 . . . . . . . . 9  |-  ( A  =/=  B  ->  ( C  =  B  ->  A  =/=  C ) )
2423adantr 481 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( C  =  B  ->  A  =/=  C ) )
2524impcom 446 . . . . . . 7  |-  ( ( C  =  B  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  A  =/=  C )
26 eldifsn 4317 . . . . . . 7  |-  ( A  e.  ( V  \  { C } )  <->  ( A  e.  V  /\  A  =/= 
C ) )
2720, 25, 26sylanbrc 698 . . . . . 6  |-  ( ( C  =  B  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  A  e.  ( V  \  { C } ) )
28 eleq1 2689 . . . . . . 7  |-  ( v  =  A  ->  (
v  e.  { A ,  B }  <->  A  e.  { A ,  B }
) )
2928adantl 482 . . . . . 6  |-  ( ( ( C  =  B  /\  ( A  =/= 
B  /\  ( A  e.  V  /\  B  e.  V ) ) )  /\  v  =  A )  ->  ( v  e.  { A ,  B } 
<->  A  e.  { A ,  B } ) )
30 prid1g 4295 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  { A ,  B } )
3130adantr 481 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  { A ,  B } )
3231adantl 482 . . . . . . 7  |-  ( ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  A  e.  { A ,  B } )
3332adantl 482 . . . . . 6  |-  ( ( C  =  B  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  A  e.  { A ,  B } )
3427, 29, 33rspcedvd 3317 . . . . 5  |-  ( ( C  =  B  /\  ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) ) )  ->  E. v  e.  ( V  \  { C }
) v  e.  { A ,  B }
)
3534ex 450 . . . 4  |-  ( C  =  B  ->  (
( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  E. v  e.  ( V  \  { C } ) v  e. 
{ A ,  B } ) )
3619, 35jaoi 394 . . 3  |-  ( ( C  =  A  \/  C  =  B )  ->  ( ( A  =/= 
B  /\  ( A  e.  V  /\  B  e.  V ) )  ->  E. v  e.  ( V  \  { C }
) v  e.  { A ,  B }
) )
371, 36syl 17 . 2  |-  ( C  e.  { A ,  B }  ->  ( ( A  =/=  B  /\  ( A  e.  V  /\  B  e.  V
) )  ->  E. v  e.  ( V  \  { C } ) v  e. 
{ A ,  B } ) )
38373impib 1262 1  |-  ( ( C  e.  { A ,  B }  /\  A  =/=  B  /\  ( A  e.  V  /\  B  e.  V ) )  ->  E. v  e.  ( V  \  { C }
) v  e.  { A ,  B }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  edglnl  26038
  Copyright terms: Public domain W3C validator