| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prproe | Structured version Visualization version Unicode version | ||
| Description: For an element of a
proper unordered pair of elements of a class |
| Ref | Expression |
|---|---|
| prproe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4197 |
. . 3
| |
| 2 | simprrr 805 |
. . . . . . 7
| |
| 3 | necom 2847 |
. . . . . . . . . 10
| |
| 4 | neeq2 2857 |
. . . . . . . . . . . 12
| |
| 5 | 4 | eqcoms 2630 |
. . . . . . . . . . 11
|
| 6 | 5 | biimpcd 239 |
. . . . . . . . . 10
|
| 7 | 3, 6 | sylbi 207 |
. . . . . . . . 9
|
| 8 | 7 | adantr 481 |
. . . . . . . 8
|
| 9 | 8 | impcom 446 |
. . . . . . 7
|
| 10 | eldifsn 4317 |
. . . . . . 7
| |
| 11 | 2, 9, 10 | sylanbrc 698 |
. . . . . 6
|
| 12 | eleq1 2689 |
. . . . . . 7
| |
| 13 | 12 | adantl 482 |
. . . . . 6
|
| 14 | prid2g 4296 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 482 |
. . . . . . . 8
|
| 16 | 15 | adantl 482 |
. . . . . . 7
|
| 17 | 16 | adantl 482 |
. . . . . 6
|
| 18 | 11, 13, 17 | rspcedvd 3317 |
. . . . 5
|
| 19 | 18 | ex 450 |
. . . 4
|
| 20 | simprrl 804 |
. . . . . . 7
| |
| 21 | neeq2 2857 |
. . . . . . . . . . 11
| |
| 22 | 21 | eqcoms 2630 |
. . . . . . . . . 10
|
| 23 | 22 | biimpcd 239 |
. . . . . . . . 9
|
| 24 | 23 | adantr 481 |
. . . . . . . 8
|
| 25 | 24 | impcom 446 |
. . . . . . 7
|
| 26 | eldifsn 4317 |
. . . . . . 7
| |
| 27 | 20, 25, 26 | sylanbrc 698 |
. . . . . 6
|
| 28 | eleq1 2689 |
. . . . . . 7
| |
| 29 | 28 | adantl 482 |
. . . . . 6
|
| 30 | prid1g 4295 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 481 |
. . . . . . . 8
|
| 32 | 31 | adantl 482 |
. . . . . . 7
|
| 33 | 32 | adantl 482 |
. . . . . 6
|
| 34 | 27, 29, 33 | rspcedvd 3317 |
. . . . 5
|
| 35 | 34 | ex 450 |
. . . 4
|
| 36 | 19, 35 | jaoi 394 |
. . 3
|
| 37 | 1, 36 | syl 17 |
. 2
|
| 38 | 37 | 3impib 1262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: edglnl 26038 |
| Copyright terms: Public domain | W3C validator |