| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pssnssi | Structured version Visualization version GIF version | ||
| Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pssnssi.1 | ⊢ 𝐴 ⊊ 𝐵 |
| Ref | Expression |
|---|---|
| pssnssi | ⊢ ¬ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssnssi.1 | . . 3 ⊢ 𝐴 ⊊ 𝐵 | |
| 2 | dfpss3 3693 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbi 220 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) |
| 4 | 3 | simpri 478 | 1 ⊢ ¬ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 384 ⊆ wss 3574 ⊊ wpss 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-in 3581 df-ss 3588 df-pss 3590 |
| This theorem is referenced by: nsssmfmbf 40987 |
| Copyright terms: Public domain | W3C validator |