| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubatN | Structured version Visualization version GIF version | ||
| Description: A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| psubatN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atpsub.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | atpsub.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | 1, 2 | psubssat 35040 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
| 4 | 3 | sseld 3602 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑋 → 𝑌 ∈ 𝐴)) |
| 5 | 4 | 3impia 1261 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 Atomscatm 34550 PSubSpcpsubsp 34782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-psubsp 34789 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |