MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwundif Structured version   Visualization version   GIF version

Theorem pwundif 5021
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
pwundif 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)

Proof of Theorem pwundif
StepHypRef Expression
1 undif1 4043 . 2 ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) = (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴)
2 pwunss 5019 . . . . 5 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
3 unss 3787 . . . . 5 ((𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵))
42, 3mpbir 221 . . . 4 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵))
54simpli 474 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
6 ssequn2 3786 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵))
75, 6mpbi 220 . 2 (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵)
81, 7eqtr2i 2645 1 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  cdif 3571  cun 3572  wss 3574  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160
This theorem is referenced by:  pwfilem  8260
  Copyright terms: Public domain W3C validator