| Step | Hyp | Ref
| Expression |
| 1 | | ssequn2 3786 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) |
| 2 | | pweq 4161 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐴) |
| 3 | | eqimss 3657 |
. . . . . . 7
⊢
(𝒫 (𝐴 ∪
𝐵) = 𝒫 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
| 5 | 1, 4 | sylbi 207 |
. . . . 5
⊢ (𝐵 ⊆ 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
| 6 | | ssequn1 3783 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| 7 | | pweq 4161 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐵) |
| 8 | | eqimss 3657 |
. . . . . . 7
⊢
(𝒫 (𝐴 ∪
𝐵) = 𝒫 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
| 9 | 7, 8 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
| 10 | 6, 9 | sylbi 207 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
| 11 | 5, 10 | orim12i 538 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∨ 𝐴 ⊆ 𝐵) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
| 12 | 11 | orcoms 404 |
. . 3
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
| 13 | | ssun 3792 |
. . 3
⊢
((𝒫 (𝐴 ∪
𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
| 14 | 12, 13 | syl 17 |
. 2
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
| 15 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
| 16 | 15 | snss 4316 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
| 17 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
| 18 | 17 | snss 4316 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐵 ↔ {𝑦} ⊆ 𝐵) |
| 19 | | unss12 3785 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑥} ⊆ 𝐴 ∧ {𝑦} ⊆ 𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵)) |
| 20 | 16, 18, 19 | syl2anb 496 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵)) |
| 21 | | zfpair2 4907 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑥, 𝑦} ∈ V |
| 22 | 21 | elpw 4164 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ {𝑥, 𝑦} ⊆ (𝐴 ∪ 𝐵)) |
| 23 | | df-pr 4180 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) |
| 24 | 23 | sseq1i 3629 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑥, 𝑦} ⊆ (𝐴 ∪ 𝐵) ↔ ({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵)) |
| 25 | 22, 24 | bitr2i 265 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵) ↔ {𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| 26 | 20, 25 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| 27 | | ssel 3597 |
. . . . . . . . . . . . . . . . 17
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → ({𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵) → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵))) |
| 28 | 26, 27 | syl5 34 |
. . . . . . . . . . . . . . . 16
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵))) |
| 29 | 28 | expcomd 454 |
. . . . . . . . . . . . . . 15
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵)))) |
| 30 | 29 | imp31 448 |
. . . . . . . . . . . . . 14
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
| 31 | | elun 3753 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥, 𝑦} ∈ 𝒫 𝐴 ∨ {𝑥, 𝑦} ∈ 𝒫 𝐵)) |
| 32 | 30, 31 | sylib 208 |
. . . . . . . . . . . . 13
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ({𝑥, 𝑦} ∈ 𝒫 𝐴 ∨ {𝑥, 𝑦} ∈ 𝒫 𝐵)) |
| 33 | 21 | elpw 4164 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐴 ↔ {𝑥, 𝑦} ⊆ 𝐴) |
| 34 | 15, 17 | prss 4351 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ {𝑥, 𝑦} ⊆ 𝐴) |
| 35 | 33, 34 | bitr4i 267 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 36 | 35 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐴 → 𝑦 ∈ 𝐴) |
| 37 | 21 | elpw 4164 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐵 ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 38 | 15, 17 | prss 4351 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 39 | 37, 38 | bitr4i 267 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 40 | 39 | simplbi 476 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐵 → 𝑥 ∈ 𝐵) |
| 41 | 36, 40 | orim12i 538 |
. . . . . . . . . . . . 13
⊢ (({𝑥, 𝑦} ∈ 𝒫 𝐴 ∨ {𝑥, 𝑦} ∈ 𝒫 𝐵) → (𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 42 | 32, 41 | syl 17 |
. . . . . . . . . . . 12
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 43 | 42 | ord 392 |
. . . . . . . . . . 11
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 44 | 43 | impancom 456 |
. . . . . . . . . 10
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 45 | 44 | ssrdv 3609 |
. . . . . . . . 9
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 46 | 45 | exp31 630 |
. . . . . . . 8
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝑦 ∈ 𝐵 → (¬ 𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵))) |
| 47 | | con1b 348 |
. . . . . . . 8
⊢ ((¬
𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵) ↔ (¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴)) |
| 48 | 46, 47 | syl6ib 241 |
. . . . . . 7
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝑦 ∈ 𝐵 → (¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴))) |
| 49 | 48 | com23 86 |
. . . . . 6
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (¬ 𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
| 50 | 49 | imp 445 |
. . . . 5
⊢
((𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) |
| 51 | 50 | ssrdv 3609 |
. . . 4
⊢
((𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝐴) |
| 52 | 51 | ex 450 |
. . 3
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ⊆ 𝐴)) |
| 53 | 52 | orrd 393 |
. 2
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 54 | 14, 53 | impbii 199 |
1
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |