| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwunss | Structured version Visualization version GIF version | ||
| Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwunss | ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun 3792 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
| 2 | elun 3753 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵)) | |
| 3 | selpw 4165 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 4 | selpw 4165 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 5 | 3, 4 | orbi12i 543 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
| 6 | 2, 5 | bitri 264 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
| 7 | selpw 4165 | . . 3 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
| 8 | 1, 6, 7 | 3imtr4i 281 | . 2 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| 9 | 8 | ssriv 3607 | 1 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 383 ∈ wcel 1990 ∪ cun 3572 ⊆ wss 3574 𝒫 cpw 4158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: pwundif 5021 pwun 5022 |
| Copyright terms: Public domain | W3C validator |