MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsdisj2 Structured version   Visualization version   GIF version

Theorem qsdisj2 7825
Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
qsdisj2 (𝑅 Er 𝑋Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑅

Proof of Theorem qsdisj2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑅 Er 𝑋)
2 simprl 794 . . . 4 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑥 ∈ (𝐴 / 𝑅))
3 simprr 796 . . . 4 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑦 ∈ (𝐴 / 𝑅))
41, 2, 3qsdisj 7824 . . 3 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
54ralrimivva 2971 . 2 (𝑅 Er 𝑋 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
6 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
76disjor 4634 . 2 (Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥 ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
85, 7sylibr 224 1 (𝑅 Er 𝑋Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  cin 3573  c0 3915  Disj wdisj 4620   Er wer 7739   / cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-disj 4621  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  qshash  14559
  Copyright terms: Public domain W3C validator