MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsdisj Structured version   Visualization version   GIF version

Theorem qsdisj 7824
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsdisj.1 (𝜑𝑅 Er 𝑋)
qsdisj.2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
qsdisj.3 (𝜑𝐶 ∈ (𝐴 / 𝑅))
Assertion
Ref Expression
qsdisj (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))

Proof of Theorem qsdisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdisj.2 . 2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
2 eqid 2622 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
3 eqeq1 2626 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶𝐵 = 𝐶))
4 ineq1 3807 . . . . 5 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅𝐶) = (𝐵𝐶))
54eqeq1d 2624 . . . 4 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅𝐶) = ∅ ↔ (𝐵𝐶) = ∅))
63, 5orbi12d 746 . . 3 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅)))
7 qsdisj.3 . . . 4 (𝜑𝐶 ∈ (𝐴 / 𝑅))
8 eqeq2 2633 . . . . . 6 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶))
9 ineq2 3808 . . . . . . 7 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅𝐶))
109eqeq1d 2624 . . . . . 6 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅𝐶) = ∅))
118, 10orbi12d 746 . . . . 5 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅)))
12 qsdisj.1 . . . . . . 7 (𝜑𝑅 Er 𝑋)
1312ad2antrr 762 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑅 Er 𝑋)
14 erdisj 7794 . . . . . 6 (𝑅 Er 𝑋 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
1513, 14syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
162, 11, 15ectocld 7814 . . . 4 (((𝜑𝑥𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
177, 16mpidan 704 . . 3 ((𝜑𝑥𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
182, 6, 17ectocld 7814 . 2 ((𝜑𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
191, 18mpdan 702 1 (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  cin 3573  c0 3915   Er wer 7739  [cec 7740   / cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  qsdisj2  7825  uniinqs  7827  cldsubg  21914  erprt  34158
  Copyright terms: Public domain W3C validator