| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2exf | Structured version Visualization version GIF version | ||
| Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 3059. (Revised by Wolf Lammen, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2exf.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| r2exf | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2exf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | r2alf 2938 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) |
| 3 | 2 | r2exlem 3059 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 Ⅎwnfc 2751 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: rexcomf 3097 |
| Copyright terms: Public domain | W3C validator |