MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcomf Structured version   Visualization version   GIF version

Theorem rexcomf 3097
Description: Commutation of restricted existential quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1 𝑦𝐴
ralcomf.2 𝑥𝐵
Assertion
Ref Expression
rexcomf (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexcomf
StepHypRef Expression
1 ancom 466 . . . . 5 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
21anbi1i 731 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜑))
322exbii 1775 . . 3 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑))
4 excom 2042 . . 3 (∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
53, 4bitri 264 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
6 ralcomf.1 . . 3 𝑦𝐴
76r2exf 3060 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
8 ralcomf.2 . . 3 𝑥𝐵
98r2exf 3060 . 2 (∃𝑦𝐵𝑥𝐴 𝜑 ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
105, 7, 93bitr4i 292 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wex 1704  wcel 1990  wnfc 2751  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918
This theorem is referenced by:  rexcom  3099  rexcom4f  29317
  Copyright terms: Public domain W3C validator