![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rab0OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of rab0 3955 as of 14-Jul-2021. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rab0OLD | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1939 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | noel 3919 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
3 | 2 | intnanr 961 | . . . . 5 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
4 | 1, 3 | 2th 254 | . . . 4 ⊢ (𝑥 = 𝑥 ↔ ¬ (𝑥 ∈ ∅ ∧ 𝜑)) |
5 | 4 | con2bii 347 | . . 3 ⊢ ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥) |
6 | 5 | abbii 2739 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
7 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
8 | dfnul2 3917 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
9 | 6, 7, 8 | 3eqtr4i 2654 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |