MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab0OLD Structured version   Visualization version   Unicode version

Theorem rab0OLD 3956
Description: Obsolete proof of rab0 3955 as of 14-Jul-2021. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rab0OLD  |-  { x  e.  (/)  |  ph }  =  (/)

Proof of Theorem rab0OLD
StepHypRef Expression
1 equid 1939 . . . . 5  |-  x  =  x
2 noel 3919 . . . . . 6  |-  -.  x  e.  (/)
32intnanr 961 . . . . 5  |-  -.  (
x  e.  (/)  /\  ph )
41, 32th 254 . . . 4  |-  ( x  =  x  <->  -.  (
x  e.  (/)  /\  ph ) )
54con2bii 347 . . 3  |-  ( ( x  e.  (/)  /\  ph ) 
<->  -.  x  =  x )
65abbii 2739 . 2  |-  { x  |  ( x  e.  (/)  /\  ph ) }  =  { x  |  -.  x  =  x }
7 df-rab 2921 . 2  |-  { x  e.  (/)  |  ph }  =  { x  |  ( x  e.  (/)  /\  ph ) }
8 dfnul2 3917 . 2  |-  (/)  =  {
x  |  -.  x  =  x }
96, 7, 83eqtr4i 2654 1  |-  { x  e.  (/)  |  ph }  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator