MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralidm Structured version   Visualization version   GIF version

Theorem ralidm 4075
Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
ralidm (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralidm
StepHypRef Expression
1 rzal 4073 . . 3 (𝐴 = ∅ → ∀𝑥𝐴𝑥𝐴 𝜑)
2 rzal 4073 . . 3 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
31, 22thd 255 . 2 (𝐴 = ∅ → (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
4 neq0 3930 . . 3 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
5 biimt 350 . . . 4 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑)))
6 df-ral 2917 . . . . 5 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑))
7 nfra1 2941 . . . . . 6 𝑥𝑥𝐴 𝜑
8719.23 2080 . . . . 5 (∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ (∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑))
96, 8bitri 264 . . . 4 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑))
105, 9syl6rbbr 279 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
114, 10sylbi 207 . 2 𝐴 = ∅ → (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
123, 11pm2.61i 176 1 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  issref  5509  cnvpo  5673  dfwe2  6981
  Copyright terms: Public domain W3C validator